summaryrefslogtreecommitdiff
path: root/src/Persistence_representations/include/gudhi/Persistence_intervals.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistence_representations/include/gudhi/Persistence_intervals.h')
-rw-r--r--src/Persistence_representations/include/gudhi/Persistence_intervals.h558
1 files changed, 558 insertions, 0 deletions
diff --git a/src/Persistence_representations/include/gudhi/Persistence_intervals.h b/src/Persistence_representations/include/gudhi/Persistence_intervals.h
new file mode 100644
index 00000000..e2db4572
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Persistence_intervals.h
@@ -0,0 +1,558 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): Pawel Dlotko
+ *
+ * Copyright (C) 2016 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+#ifndef PERSISTENCE_INTERVALS_H_
+#define PERSISTENCE_INTERVALS_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+
+// standard include
+#include <limits>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <algorithm>
+#include <cmath>
+#include <functional>
+#include <utility>
+#include <string>
+
+namespace Gudhi {
+namespace Persistence_representations {
+
+/**
+ * This class implements the following concepts: Vectorized_topological_data, Topological_data_with_distances,
+ *Real_valued_topological_data
+**/
+class Persistence_intervals {
+ public:
+ /**
+ * This is a constructor of a class Persistence_intervals from a text file. Each line of the input file is supposed to
+ *contain two numbers of a type double (or convertible to double)
+ * representing the birth and the death of the persistence interval. If the pairs are not sorted so that birth <=
+ *death, then the constructor will sort then that way.
+ * * The second parameter of a constructor is a dimension of intervals to be read from a file. If your file contains
+ *only birth-death pairs, use the default value.
+ **/
+ Persistence_intervals(const char* filename, unsigned dimension = std::numeric_limits<unsigned>::max());
+
+ /**
+ * This is a constructor of a class Persistence_intervals from a vector of pairs. Each pair is assumed to represent a
+ *persistence interval. We assume that the first elements of pairs
+ * are smaller or equal the second elements of pairs.
+ **/
+ Persistence_intervals(const std::vector<std::pair<double, double> >& intervals);
+
+ /**
+ * This procedure returns x-range of a given persistence diagram.
+ **/
+ std::pair<double, double> get_x_range() const {
+ double min_ = std::numeric_limits<int>::max();
+ double max_ = -std::numeric_limits<int>::max();
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ if (this->intervals[i].first < min_) min_ = this->intervals[i].first;
+ if (this->intervals[i].second > max_) max_ = this->intervals[i].second;
+ }
+ return std::make_pair(min_, max_);
+ }
+
+ /**
+ * This procedure returns y-range of a given persistence diagram.
+ **/
+ std::pair<double, double> get_y_range() const {
+ double min_ = std::numeric_limits<int>::max();
+ double max_ = -std::numeric_limits<int>::max();
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ if (this->intervals[i].second < min_) min_ = this->intervals[i].second;
+ if (this->intervals[i].second > max_) max_ = this->intervals[i].second;
+ }
+ return std::make_pair(min_, max_);
+ }
+
+ /**
+ * Procedure that compute the vector of lengths of the dominant (i.e. the longest) persistence intervals. The list is
+ *truncated at the parameter of the call where_to_cut (set by default to 100).
+ **/
+ std::vector<double> length_of_dominant_intervals(size_t where_to_cut = 100) const;
+
+ /**
+ * Procedure that compute the vector of the dominant (i.e. the longest) persistence intervals. The parameter of
+ *the procedure (set by default to 100) is the number of dominant intervals returned by the procedure.
+ **/
+ std::vector<std::pair<double, double> > dominant_intervals(size_t where_to_cut = 100) const;
+
+ /**
+ * Procedure to compute a histogram of interval's length. A histogram is a block plot. The number of blocks is
+ *determined by the first parameter of the function (set by default to 10).
+ * For the sake of argument let us assume that the length of the longest interval is 1 and the number of bins is
+ *10. In this case the i-th block correspond to a range between i-1/10 and i10.
+ * The vale of a block supported at the interval is the number of persistence intervals of a length between x_0
+ *and x_1.
+ **/
+ std::vector<size_t> histogram_of_lengths(size_t number_of_bins = 10) const;
+
+ /**
+ * Based on a histogram of intervals lengths computed by the function histogram_of_lengths H the procedure below
+ *computes the cumulative histogram. The i-th position of the resulting histogram
+ * is the sum of values of H for the positions from 0 to i.
+ **/
+ std::vector<size_t> cumulative_histogram_of_lengths(size_t number_of_bins = 10) const;
+
+ /**
+ * In this procedure we assume that each barcode is a characteristic function of a hight equal to its length. The
+ *persistence diagram is a sum of such a functions. The procedure below construct a function being a
+ * sum of the characteristic functions of persistence intervals. The first two parameters are the range in which the
+ *function is to be computed and the last parameter is the number of bins in
+ * the discretization of the interval [_min,_max].
+ **/
+ std::vector<double> characteristic_function_of_diagram(double x_min, double x_max, size_t number_of_bins = 10) const;
+
+ /**
+ * Cumulative version of the function characteristic_function_of_diagram
+ **/
+ std::vector<double> cumulative_characteristic_function_of_diagram(double x_min, double x_max,
+ size_t number_of_bins = 10) const;
+
+ /**
+ * Compute the function of persistence Betti numbers. The returned value is a vector of pair. First element of each
+ *pair is a place where persistence Betti numbers change.
+ * Second element of each pair is the value of Persistence Betti numbers at that point.
+ **/
+ std::vector<std::pair<double, size_t> > compute_persistent_betti_numbers() const;
+
+ /**
+ *This is a non optimal procedure that compute vector of distances from each point of diagram to its k-th nearest
+ *neighbor (k is a parameter of the program). The resulting vector is by default truncated to 10
+ *elements (this value can be changed by using the second parameter of the program). The points are returned in order
+ *from the ones which are farthest away from their k-th nearest neighbors.
+ **/
+ std::vector<double> k_n_n(size_t k, size_t where_to_cut = 10) const;
+
+ /**
+* Operator that send the diagram to a stream.
+**/
+ friend std::ostream& operator<<(std::ostream& out, const Persistence_intervals& intervals) {
+ for (size_t i = 0; i != intervals.intervals.size(); ++i) {
+ out << intervals.intervals[i].first << " " << intervals.intervals[i].second << std::endl;
+ }
+ return out;
+ }
+
+ /**
+ * Generating gnuplot script to plot the interval.
+ **/
+ void plot(const char* filename, double min_x = std::numeric_limits<double>::max(),
+ double max_x = std::numeric_limits<double>::max(), double min_y = std::numeric_limits<double>::max(),
+ double max_y = std::numeric_limits<double>::max()) const {
+ // this program create a gnuplot script file that allows to plot persistence diagram.
+ std::ofstream out;
+
+ std::stringstream gnuplot_script;
+ gnuplot_script << filename << "_GnuplotScript";
+
+ out.open(gnuplot_script.str().c_str());
+
+ std::pair<double, double> min_max_values = this->get_x_range();
+ if (min_x == max_x) {
+ out << "set xrange [" << min_max_values.first - 0.1 * (min_max_values.second - min_max_values.first) << " : "
+ << min_max_values.second + 0.1 * (min_max_values.second - min_max_values.first) << " ]" << std::endl;
+ out << "set yrange [" << min_max_values.first - 0.1 * (min_max_values.second - min_max_values.first) << " : "
+ << min_max_values.second + 0.1 * (min_max_values.second - min_max_values.first) << " ]" << std::endl;
+ } else {
+ out << "set xrange [" << min_x << " : " << max_x << " ]" << std::endl;
+ out << "set yrange [" << min_y << " : " << max_y << " ]" << std::endl;
+ }
+ out << "plot '-' using 1:2 notitle \"" << filename << "\", \\" << std::endl;
+ out << " '-' using 1:2 notitle with lp" << std::endl;
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ out << this->intervals[i].first << " " << this->intervals[i].second << std::endl;
+ }
+ out << "EOF" << std::endl;
+ out << min_max_values.first - 0.1 * (min_max_values.second - min_max_values.first) << " "
+ << min_max_values.first - 0.1 * (min_max_values.second - min_max_values.first) << std::endl;
+ out << min_max_values.second + 0.1 * (min_max_values.second - min_max_values.first) << " "
+ << min_max_values.second + 0.1 * (min_max_values.second - min_max_values.first) << std::endl;
+
+ out.close();
+
+ std::cout << "To visualize, install gnuplot and type the command: gnuplot -persist -e \"load \'"
+ << gnuplot_script.str().c_str() << "\'\"" << std::endl;
+ }
+
+ /**
+* Return number of points in the diagram.
+**/
+ size_t size() const { return this->intervals.size(); }
+
+ /**
+ * Return the persistence interval at the given position. Note that intervals are not sorted with respect to their
+ *lengths.
+ **/
+ inline std::pair<double, double> operator[](size_t i) const {
+ if (i >= this->intervals.size()) throw("Index out of range! Operator [], one_d_gaussians class\n");
+ return this->intervals[i];
+ }
+
+ // Implementations of functions for various concepts.
+ /**
+ * This is a simple function projecting the persistence intervals to a real number. The function we use here is a sum
+ *of squared lengths of intervals. It can be naturally interpreted as
+ * sum of step function, where the step hight it equal to the length of the interval.
+ * At the moment this function is not tested, since it is quite likely to be changed in the future. Given this, when
+ *using it, keep in mind that it
+ * will be most likely changed in the next versions.
+ **/
+ double project_to_R(int number_of_function) const;
+ /**
+ * The function gives the number of possible projections to R. This function is required by the
+ *Real_valued_topological_data concept.
+ **/
+ size_t number_of_projections_to_R() const { return this->number_of_functions_for_projections_to_reals; }
+
+ /**
+ * Return a family of vectors obtained from the persistence diagram. The i-th vector consist of the length of i
+ *dominant persistence intervals.
+ **/
+ std::vector<double> vectorize(int number_of_function) const {
+ return this->length_of_dominant_intervals(number_of_function);
+ }
+ /**
+ * This function return the number of functions that allows vectorization of a persistence diagram. It is required
+ *in a concept Vectorized_topological_data.
+ **/
+ size_t number_of_vectorize_functions() const { return this->number_of_functions_for_vectorization; }
+
+ // end of implementation of functions needed for concepts.
+
+ // For visualization use output from vectorize and build histograms.
+ std::vector<std::pair<double, double> > output_for_visualization() { return this->intervals; }
+
+ protected:
+ void set_up_numbers_of_functions_for_vectorization_and_projections_to_reals() {
+ // warning, this function can be only called after filling in the intervals vector.
+ this->number_of_functions_for_vectorization = this->intervals.size();
+ this->number_of_functions_for_projections_to_reals = 1;
+ }
+
+ std::vector<std::pair<double, double> > intervals;
+ size_t number_of_functions_for_vectorization;
+ size_t number_of_functions_for_projections_to_reals;
+};
+
+Persistence_intervals::Persistence_intervals(const char* filename, unsigned dimension) {
+ if (dimension == std::numeric_limits<unsigned>::max()) {
+ this->intervals = read_persistence_intervals_in_one_dimension_from_file(filename);
+ } else {
+ this->intervals = read_persistence_intervals_in_one_dimension_from_file(filename, dimension);
+ }
+ this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
+} // Persistence_intervals
+
+Persistence_intervals::Persistence_intervals(const std::vector<std::pair<double, double> >& intervals_)
+ : intervals(intervals_) {
+ this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
+}
+
+std::vector<double> Persistence_intervals::length_of_dominant_intervals(size_t where_to_cut) const {
+ std::vector<double> result(this->intervals.size());
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ result[i] = this->intervals[i].second - this->intervals[i].first;
+ }
+ std::sort(result.begin(), result.end(), std::greater<double>());
+
+ result.resize(std::min(where_to_cut, result.size()));
+ return result;
+} // length_of_dominant_intervals
+
+bool compare(const std::pair<size_t, double>& first, const std::pair<size_t, double>& second) {
+ return first.second > second.second;
+}
+
+std::vector<std::pair<double, double> > Persistence_intervals::dominant_intervals(size_t where_to_cut) const {
+ bool dbg = false;
+ std::vector<std::pair<size_t, double> > position_length_vector(this->intervals.size());
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ position_length_vector[i] = std::make_pair(i, this->intervals[i].second - this->intervals[i].first);
+ }
+
+ std::sort(position_length_vector.begin(), position_length_vector.end(), compare);
+
+ std::vector<std::pair<double, double> > result;
+ result.reserve(std::min(where_to_cut, position_length_vector.size()));
+
+ for (size_t i = 0; i != std::min(where_to_cut, position_length_vector.size()); ++i) {
+ result.push_back(this->intervals[position_length_vector[i].first]);
+ if (dbg)
+ std::cerr << "Position : " << position_length_vector[i].first << " length : " << position_length_vector[i].second
+ << std::endl;
+ }
+
+ return result;
+} // dominant_intervals
+
+std::vector<size_t> Persistence_intervals::histogram_of_lengths(size_t number_of_bins) const {
+ bool dbg = false;
+
+ if (dbg) std::cerr << "this->intervals.size() : " << this->intervals.size() << std::endl;
+ // first find the length of the longest interval:
+ double lengthOfLongest = 0;
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ if ((this->intervals[i].second - this->intervals[i].first) > lengthOfLongest) {
+ lengthOfLongest = this->intervals[i].second - this->intervals[i].first;
+ }
+ }
+
+ if (dbg) {
+ std::cerr << "lengthOfLongest : " << lengthOfLongest << std::endl;
+ }
+
+ // this is a container we will use to store the resulting histogram
+ std::vector<size_t> result(number_of_bins + 1, 0);
+
+ // for every persistence interval in our collection.
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ // compute its length relative to the length of the dominant interval:
+ double relative_length_of_this_interval = (this->intervals[i].second - this->intervals[i].first) / lengthOfLongest;
+
+ // given the relative length (between 0 and 1) compute to which bin should it contribute.
+ size_t position = (size_t)(relative_length_of_this_interval * number_of_bins);
+
+ ++result[position];
+
+ if (dbg) {
+ std::cerr << "i : " << i << std::endl;
+ std::cerr << "Interval : [" << this->intervals[i].first << " , " << this->intervals[i].second << " ] \n";
+ std::cerr << "relative_length_of_this_interval : " << relative_length_of_this_interval << std::endl;
+ std::cerr << "position : " << position << std::endl;
+ getchar();
+ }
+ }
+
+ if (dbg) {
+ for (size_t i = 0; i != result.size(); ++i) std::cerr << result[i] << std::endl;
+ }
+ return result;
+}
+
+std::vector<size_t> Persistence_intervals::cumulative_histogram_of_lengths(size_t number_of_bins) const {
+ std::vector<size_t> histogram = this->histogram_of_lengths(number_of_bins);
+ std::vector<size_t> result(histogram.size());
+
+ size_t sum = 0;
+ for (size_t i = 0; i != histogram.size(); ++i) {
+ sum += histogram[i];
+ result[i] = sum;
+ }
+ return result;
+}
+
+std::vector<double> Persistence_intervals::characteristic_function_of_diagram(double x_min, double x_max,
+ size_t number_of_bins) const {
+ bool dbg = false;
+
+ std::vector<double> result(number_of_bins);
+ std::fill(result.begin(), result.end(), 0);
+
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ if (dbg) {
+ std::cerr << "Interval : " << this->intervals[i].first << " , " << this->intervals[i].second << std::endl;
+ }
+
+ size_t beginIt = 0;
+ if (this->intervals[i].first < x_min) beginIt = 0;
+ if (this->intervals[i].first >= x_max) beginIt = result.size();
+ if ((this->intervals[i].first > x_min) && (this->intervals[i].first < x_max)) {
+ beginIt = number_of_bins * (this->intervals[i].first - x_min) / (x_max - x_min);
+ }
+
+ size_t endIt = 0;
+ if (this->intervals[i].second < x_min) endIt = 0;
+ if (this->intervals[i].second >= x_max) endIt = result.size();
+ if ((this->intervals[i].second > x_min) && (this->intervals[i].second < x_max)) {
+ endIt = number_of_bins * (this->intervals[i].second - x_min) / (x_max - x_min);
+ }
+
+ if (beginIt > endIt) {
+ beginIt = endIt;
+ }
+
+ if (dbg) {
+ std::cerr << "beginIt : " << beginIt << std::endl;
+ std::cerr << "endIt : " << endIt << std::endl;
+ }
+
+ for (size_t pos = beginIt; pos != endIt; ++pos) {
+ result[pos] += ((x_max - x_min) / static_cast<double>(number_of_bins)) *
+ (this->intervals[i].second - this->intervals[i].first);
+ }
+ if (dbg) {
+ std::cerr << "Result at this stage \n";
+ for (size_t aa = 0; aa != result.size(); ++aa) {
+ std::cerr << result[aa] << " ";
+ }
+ std::cerr << std::endl;
+ }
+ }
+ return result;
+} // characteristic_function_of_diagram
+
+std::vector<double> Persistence_intervals::cumulative_characteristic_function_of_diagram(double x_min, double x_max,
+ size_t number_of_bins) const {
+ std::vector<double> intsOfBars = this->characteristic_function_of_diagram(x_min, x_max, number_of_bins);
+ std::vector<double> result(intsOfBars.size());
+ double sum = 0;
+ for (size_t i = 0; i != intsOfBars.size(); ++i) {
+ sum += intsOfBars[i];
+ result[i] = sum;
+ }
+ return result;
+} // cumulative_characteristic_function_of_diagram
+
+template <typename T>
+bool compare_first_element_of_pair(const std::pair<T, bool>& f, const std::pair<T, bool>& s) {
+ return (f.first < s.first);
+}
+
+std::vector<std::pair<double, size_t> > Persistence_intervals::compute_persistent_betti_numbers() const {
+ std::vector<std::pair<double, bool> > places_where_pbs_change(2 * this->intervals.size());
+
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ places_where_pbs_change[2 * i] = std::make_pair(this->intervals[i].first, true);
+ places_where_pbs_change[2 * i + 1] = std::make_pair(this->intervals[i].second, false);
+ }
+
+ std::sort(places_where_pbs_change.begin(), places_where_pbs_change.end(), compare_first_element_of_pair<double>);
+ size_t pbn = 0;
+ std::vector<std::pair<double, size_t> > pbns(places_where_pbs_change.size());
+ for (size_t i = 0; i != places_where_pbs_change.size(); ++i) {
+ if (places_where_pbs_change[i].second == true) {
+ ++pbn;
+ } else {
+ --pbn;
+ }
+ pbns[i] = std::make_pair(places_where_pbs_change[i].first, pbn);
+ }
+ return pbns;
+}
+
+inline double compute_euclidean_distance(const std::pair<double, double>& f, const std::pair<double, double>& s) {
+ return sqrt((f.first - s.first) * (f.first - s.first) + (f.second - s.second) * (f.second - s.second));
+}
+
+std::vector<double> Persistence_intervals::k_n_n(size_t k, size_t where_to_cut) const {
+ bool dbg = false;
+ if (dbg) {
+ std::cerr << "Here are the intervals : \n";
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ std::cerr << "[ " << this->intervals[i].first << " , " << this->intervals[i].second << "] \n";
+ }
+ getchar();
+ }
+
+ std::vector<double> result;
+ // compute all to all distance between point in the diagram. Also, consider points in the diagonal with the infinite
+ // multiplicity.
+ std::vector<std::vector<double> > distances(this->intervals.size());
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ std::vector<double> aa(this->intervals.size());
+ std::fill(aa.begin(), aa.end(), 0);
+ distances[i] = aa;
+ }
+ std::vector<double> distances_from_diagonal(this->intervals.size());
+ std::fill(distances_from_diagonal.begin(), distances_from_diagonal.end(), 0);
+
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ std::vector<double> distancesFromI;
+ for (size_t j = i + 1; j != this->intervals.size(); ++j) {
+ distancesFromI.push_back(compute_euclidean_distance(this->intervals[i], this->intervals[j]));
+ }
+ // also add a distance from this guy to diagonal:
+ double distanceToDiagonal = compute_euclidean_distance(
+ this->intervals[i], std::make_pair(0.5 * (this->intervals[i].first + this->intervals[i].second),
+ 0.5 * (this->intervals[i].first + this->intervals[i].second)));
+ distances_from_diagonal[i] = distanceToDiagonal;
+
+ if (dbg) {
+ std::cerr << "Here are the distances form the point : [" << this->intervals[i].first << " , "
+ << this->intervals[i].second << "] in the diagram \n";
+ for (size_t aa = 0; aa != distancesFromI.size(); ++aa) {
+ std::cerr << "To : " << i + aa << " : " << distancesFromI[aa] << " ";
+ }
+ std::cerr << std::endl;
+ getchar();
+ }
+
+ // filling in the distances matrix:
+ for (size_t j = i + 1; j != this->intervals.size(); ++j) {
+ distances[i][j] = distancesFromI[j - i - 1];
+ distances[j][i] = distancesFromI[j - i - 1];
+ }
+ }
+ if (dbg) {
+ std::cerr << "Here is the distance matrix : \n";
+ for (size_t i = 0; i != distances.size(); ++i) {
+ for (size_t j = 0; j != distances.size(); ++j) {
+ std::cerr << distances[i][j] << " ";
+ }
+ std::cerr << std::endl;
+ }
+ std::cerr << std::endl << std::endl << "And here are the distances to the diagonal : " << std::endl;
+ for (size_t i = 0; i != distances_from_diagonal.size(); ++i) {
+ std::cerr << distances_from_diagonal[i] << " ";
+ }
+ std::cerr << std::endl << std::endl;
+ getchar();
+ }
+
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ std::vector<double> distancesFromI = distances[i];
+ distancesFromI.push_back(distances_from_diagonal[i]);
+
+ // sort it:
+ std::sort(distancesFromI.begin(), distancesFromI.end(), std::greater<double>());
+
+ if (k > distancesFromI.size()) {
+ if (dbg) {
+ std::cerr << "There are not enough neighbors in your set. We set the result to plus infty \n";
+ }
+ result.push_back(std::numeric_limits<double>::max());
+ } else {
+ if (distances_from_diagonal[i] > distancesFromI[k]) {
+ if (dbg) {
+ std::cerr << "The k-th n.n. is on a diagonal. Therefore we set up a distance to diagonal \n";
+ }
+ result.push_back(distances_from_diagonal[i]);
+ } else {
+ result.push_back(distancesFromI[k]);
+ }
+ }
+ }
+ std::sort(result.begin(), result.end(), std::greater<double>());
+ result.resize(std::min(result.size(), where_to_cut));
+
+ return result;
+}
+
+double Persistence_intervals::project_to_R(int number_of_function) const {
+ double result = 0;
+
+ for (size_t i = 0; i != this->intervals.size(); ++i) {
+ result +=
+ (this->intervals[i].second - this->intervals[i].first) * (this->intervals[i].second - this->intervals[i].first);
+ }
+
+ return result;
+}
+
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // PERSISTENCE_INTERVALS_H_