summaryrefslogtreecommitdiff
path: root/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h')
-rw-r--r--src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h373
1 files changed, 229 insertions, 144 deletions
diff --git a/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h b/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
index 5d0f4a5d..18165c5f 100644
--- a/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
+++ b/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
@@ -4,7 +4,7 @@
*
* Author(s): Mathieu Carriere
*
- * Copyright (C) 2018 INRIA (France)
+ * Copyright (C) 2018 Inria
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -28,6 +28,13 @@
#include <gudhi/common_persistence_representations.h>
#include <gudhi/Debug_utils.h>
+#include <vector> // for std::vector<>
+#include <utility> // for std::pair<>, std::move
+#include <algorithm> // for std::sort, std::max, std::merge
+#include <cmath> // for std::abs, std::sqrt
+#include <stdexcept> // for std::invalid_argument
+#include <random> // for std::random_device
+
namespace Gudhi {
namespace Persistence_representations {
@@ -39,31 +46,33 @@ namespace Persistence_representations {
*
* \details
* In this class, we compute infinite-dimensional representations of persistence diagrams by using the
- * Sliced Wasserstein kernel (see \ref sec_persistence_kernels for more details on kernels). We recall that infinite-dimensional
- * representations are defined implicitly, so only scalar products and distances are available for the representations defined in this class.
- * The Sliced Wasserstein kernel is defined as a Gaussian-like kernel between persistence diagrams, where the distance used for
- * comparison is the Sliced Wasserstein distance \f$SW\f$ between persistence diagrams, defined as the integral of the 1-norm
- * between the sorted projections of the diagrams onto all lines passing through the origin:
+ * Sliced Wasserstein kernel (see \ref sec_persistence_kernels for more details on kernels). We recall that
+ * infinite-dimensional representations are defined implicitly, so only scalar products and distances are available for
+ * the representations defined in this class.
+ * The Sliced Wasserstein kernel is defined as a Gaussian-like kernel between persistence diagrams, where the distance
+ * used for comparison is the Sliced Wasserstein distance \f$SW\f$ between persistence diagrams, defined as the
+ * integral of the 1-norm between the sorted projections of the diagrams onto all lines passing through the origin:
*
- * \f$ SW(D_1,D_2)=\int_{\theta\in\mathbb{S}}\,\|\pi_\theta(D_1\cup\pi_\Delta(D_2))-\pi_\theta(D_2\cup\pi_\Delta(D_1))\|_1{\rm d}\theta\f$,
+ * \f$ SW(D_1,D_2)=\int_{\theta\in\mathbb{S}}\,\|\pi_\theta(D_1\cup\pi_\Delta(D_2))-\pi_\theta(D_2\cup\pi_\Delta(D_1))\
+ * |_1{\rm d}\theta\f$,
*
- * where \f$\pi_\theta\f$ is the projection onto the line defined with angle \f$\theta\f$ in the unit circle \f$\mathbb{S}\f$,
- * and \f$\pi_\Delta\f$ is the projection onto the diagonal.
- * Assuming that the diagrams are in general position (i.e. there is no collinear triple), the integral can be computed exactly in \f$O(n^2{\rm log}(n))\f$ time, where \f$n\f$ is the number of points
- * in the diagrams. We provide two approximations of the integral: one in which we slightly perturb the diagram points so that they are in general position,
- * and another in which we approximate the integral by sampling \f$N\f$ lines in the circle in \f$O(Nn{\rm log}(n))\f$ time. The Sliced Wasserstein Kernel is then computed as:
+ * where \f$\pi_\theta\f$ is the projection onto the line defined with angle \f$\theta\f$ in the unit circle
+ * \f$\mathbb{S}\f$, and \f$\pi_\Delta\f$ is the projection onto the diagonal.
+ * Assuming that the diagrams are in general position (i.e. there is no collinear triple), the integral can be computed
+ * exactly in \f$O(n^2{\rm log}(n))\f$ time, where \f$n\f$ is the number of points in the diagrams. We provide two
+ * approximations of the integral: one in which we slightly perturb the diagram points so that they are in general
+ * position, and another in which we approximate the integral by sampling \f$N\f$ lines in the circle in
+ * \f$O(Nn{\rm log}(n))\f$ time. The Sliced Wasserstein Kernel is then computed as:
*
* \f$ k(D_1,D_2) = {\rm exp}\left(-\frac{SW(D_1,D_2)}{2\sigma^2}\right).\f$
*
* The first method is usually much more accurate but also
* much slower. For more details, please see \cite pmlr-v70-carriere17a .
*
-**/
+ **/
class Sliced_Wasserstein {
-
protected:
-
Persistence_diagram diagram;
int approx;
double sigma;
@@ -73,27 +82,26 @@ class Sliced_Wasserstein {
// Utils.
// **********************************
- void build_rep(){
-
- if(approx > 0){
-
- double step = pi/this->approx;
+ void build_rep() {
+ if (approx > 0) {
+ double step = pi / this->approx;
int n = diagram.size();
- for (int i = 0; i < this->approx; i++){
- std::vector<double> l,l_diag;
- for (int j = 0; j < n; j++){
-
- double px = diagram[j].first; double py = diagram[j].second;
- double proj_diag = (px+py)/2;
+ for (int i = 0; i < this->approx; i++) {
+ std::vector<double> l, l_diag;
+ for (int j = 0; j < n; j++) {
+ double px = diagram[j].first;
+ double py = diagram[j].second;
+ double proj_diag = (px + py) / 2;
- l.push_back ( px * cos(-pi/2+i*step) + py * sin(-pi/2+i*step) );
- l_diag.push_back ( proj_diag * cos(-pi/2+i*step) + proj_diag * sin(-pi/2+i*step) );
+ l.push_back(px * cos(-pi / 2 + i * step) + py * sin(-pi / 2 + i * step));
+ l_diag.push_back(proj_diag * cos(-pi / 2 + i * step) + proj_diag * sin(-pi / 2 + i * step));
}
- std::sort(l.begin(), l.end()); std::sort(l_diag.begin(), l_diag.end());
- projections.push_back(std::move(l)); projections_diagonal.push_back(std::move(l_diag));
-
+ std::sort(l.begin(), l.end());
+ std::sort(l_diag.begin(), l_diag.end());
+ projections.push_back(std::move(l));
+ projections_diagonal.push_back(std::move(l_diag));
}
diagram.clear();
@@ -101,179 +109,254 @@ class Sliced_Wasserstein {
}
// Compute the angle formed by two points of a PD
- double compute_angle(const Persistence_diagram & diag, int i, int j) const {
- if(diag[i].second == diag[j].second) return pi/2; else return atan((diag[j].first-diag[i].first)/(diag[i].second-diag[j].second));
+ double compute_angle(const Persistence_diagram& diag, int i, int j) const {
+ if (diag[i].second == diag[j].second)
+ return pi / 2;
+ else
+ return atan((diag[j].first - diag[i].first) / (diag[i].second - diag[j].second));
}
- // Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
+ // Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in
+ // [0,pi]
double compute_int_cos(double alpha, double beta) const {
double res = 0;
- if (alpha >= 0 && alpha <= pi){
- if (cos(alpha) >= 0){
- if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
- else{res = sin(beta)-sin(alpha);}
- }
- else{
- if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);}
- else{res = sin(alpha)-sin(beta);}
+ if (alpha >= 0 && alpha <= pi) {
+ if (cos(alpha) >= 0) {
+ if (pi / 2 <= beta) {
+ res = 2 - sin(alpha) - sin(beta);
+ } else {
+ res = sin(beta) - sin(alpha);
+ }
+ } else {
+ if (1.5 * pi <= beta) {
+ res = 2 + sin(alpha) + sin(beta);
+ } else {
+ res = sin(alpha) - sin(beta);
+ }
}
}
- if (alpha >= -pi && alpha <= 0){
- if (cos(alpha) <= 0){
- if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);}
- else{res = sin(alpha)-sin(beta);}
- }
- else{
- if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
- else{res = sin(beta)-sin(alpha);}
+ if (alpha >= -pi && alpha <= 0) {
+ if (cos(alpha) <= 0) {
+ if (-pi / 2 <= beta) {
+ res = 2 + sin(alpha) + sin(beta);
+ } else {
+ res = sin(alpha) - sin(beta);
+ }
+ } else {
+ if (pi / 2 <= beta) {
+ res = 2 - sin(alpha) - sin(beta);
+ } else {
+ res = sin(beta) - sin(alpha);
+ }
}
}
return res;
}
- double compute_int(double theta1, double theta2, int p, int q, const Persistence_diagram & diag1, const Persistence_diagram & diag2) const {
- double norm = std::sqrt( (diag1[p].first-diag2[q].first)*(diag1[p].first-diag2[q].first) + (diag1[p].second-diag2[q].second)*(diag1[p].second-diag2[q].second) );
+ double compute_int(double theta1, double theta2, int p, int q, const Persistence_diagram& diag1,
+ const Persistence_diagram& diag2) const {
+ double norm = std::sqrt((diag1[p].first - diag2[q].first) * (diag1[p].first - diag2[q].first) +
+ (diag1[p].second - diag2[q].second) * (diag1[p].second - diag2[q].second));
double angle1;
- if (diag1[p].first == diag2[q].first) angle1 = theta1 - pi/2; else angle1 = theta1 - atan((diag1[p].second-diag2[q].second)/(diag1[p].first-diag2[q].first));
+ if (diag1[p].first == diag2[q].first)
+ angle1 = theta1 - pi / 2;
+ else
+ angle1 = theta1 - atan((diag1[p].second - diag2[q].second) / (diag1[p].first - diag2[q].first));
double angle2 = angle1 + theta2 - theta1;
- double integral = compute_int_cos(angle1,angle2);
- return norm*integral;
+ double integral = compute_int_cos(angle1, angle2);
+ return norm * integral;
}
// Evaluation of the Sliced Wasserstein Distance between a pair of diagrams.
- double compute_sliced_wasserstein_distance(const Sliced_Wasserstein & second) const {
-
- GUDHI_CHECK(this->approx == second.approx, std::invalid_argument("Error: different approx values for representations"));
+ double compute_sliced_wasserstein_distance(const Sliced_Wasserstein& second) const {
+ GUDHI_CHECK(this->approx == second.approx,
+ std::invalid_argument("Error: different approx values for representations"));
- Persistence_diagram diagram1 = this->diagram; Persistence_diagram diagram2 = second.diagram; double sw = 0;
-
- if(this->approx == -1){
+ Persistence_diagram diagram1 = this->diagram;
+ Persistence_diagram diagram2 = second.diagram;
+ double sw = 0;
+ if (this->approx == -1) {
// Add projections onto diagonal.
- int n1, n2; n1 = diagram1.size(); n2 = diagram2.size();
- double min_ordinate = std::numeric_limits<double>::max(); double min_abscissa = std::numeric_limits<double>::max();
- double max_ordinate = std::numeric_limits<double>::lowest(); double max_abscissa = std::numeric_limits<double>::lowest();
- for (int i = 0; i < n2; i++){
- min_ordinate = std::min(min_ordinate, diagram2[i].second); min_abscissa = std::min(min_abscissa, diagram2[i].first);
- max_ordinate = std::max(max_ordinate, diagram2[i].second); max_abscissa = std::max(max_abscissa, diagram2[i].first);
- diagram1.emplace_back( (diagram2[i].first+diagram2[i].second)/2, (diagram2[i].first+diagram2[i].second)/2 );
+ int n1, n2;
+ n1 = diagram1.size();
+ n2 = diagram2.size();
+ double min_ordinate = std::numeric_limits<double>::max();
+ double min_abscissa = std::numeric_limits<double>::max();
+ double max_ordinate = std::numeric_limits<double>::lowest();
+ double max_abscissa = std::numeric_limits<double>::lowest();
+ for (int i = 0; i < n2; i++) {
+ min_ordinate = std::min(min_ordinate, diagram2[i].second);
+ min_abscissa = std::min(min_abscissa, diagram2[i].first);
+ max_ordinate = std::max(max_ordinate, diagram2[i].second);
+ max_abscissa = std::max(max_abscissa, diagram2[i].first);
+ diagram1.emplace_back((diagram2[i].first + diagram2[i].second) / 2,
+ (diagram2[i].first + diagram2[i].second) / 2);
}
- for (int i = 0; i < n1; i++){
- min_ordinate = std::min(min_ordinate, diagram1[i].second); min_abscissa = std::min(min_abscissa, diagram1[i].first);
- max_ordinate = std::max(max_ordinate, diagram1[i].second); max_abscissa = std::max(max_abscissa, diagram1[i].first);
- diagram2.emplace_back( (diagram1[i].first+diagram1[i].second)/2, (diagram1[i].first+diagram1[i].second)/2 );
+ for (int i = 0; i < n1; i++) {
+ min_ordinate = std::min(min_ordinate, diagram1[i].second);
+ min_abscissa = std::min(min_abscissa, diagram1[i].first);
+ max_ordinate = std::max(max_ordinate, diagram1[i].second);
+ max_abscissa = std::max(max_abscissa, diagram1[i].first);
+ diagram2.emplace_back((diagram1[i].first + diagram1[i].second) / 2,
+ (diagram1[i].first + diagram1[i].second) / 2);
}
int num_pts_dgm = diagram1.size();
// Slightly perturb the points so that the PDs are in generic positions.
double epsilon = 0.0001;
- double thresh_y = (max_ordinate-min_ordinate) * epsilon; double thresh_x = (max_abscissa-min_abscissa) * epsilon;
- std::random_device rd; std::default_random_engine re(rd()); std::uniform_real_distribution<double> uni(-1,1);
- for (int i = 0; i < num_pts_dgm; i++){
+ double thresh_y = (max_ordinate - min_ordinate) * epsilon;
+ double thresh_x = (max_abscissa - min_abscissa) * epsilon;
+ std::random_device rd;
+ std::default_random_engine re(rd());
+ std::uniform_real_distribution<double> uni(-1, 1);
+ for (int i = 0; i < num_pts_dgm; i++) {
double u = uni(re);
- diagram1[i].first += u*thresh_x; diagram1[i].second += u*thresh_y;
- diagram2[i].first += u*thresh_x; diagram2[i].second += u*thresh_y;
+ diagram1[i].first += u * thresh_x;
+ diagram1[i].second += u * thresh_y;
+ diagram2[i].first += u * thresh_x;
+ diagram2[i].second += u * thresh_y;
}
// Compute all angles in both PDs.
- std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
- for (int i = 0; i < num_pts_dgm; i++){
- for (int j = i+1; j < num_pts_dgm; j++){
- double theta1 = compute_angle(diagram1,i,j); double theta2 = compute_angle(diagram2,i,j);
- angles1.emplace_back(theta1, std::pair<int,int>(i,j));
- angles2.emplace_back(theta2, std::pair<int,int>(i,j));
+ std::vector<std::pair<double, std::pair<int, int> > > angles1, angles2;
+ for (int i = 0; i < num_pts_dgm; i++) {
+ for (int j = i + 1; j < num_pts_dgm; j++) {
+ double theta1 = compute_angle(diagram1, i, j);
+ double theta2 = compute_angle(diagram2, i, j);
+ angles1.emplace_back(theta1, std::pair<int, int>(i, j));
+ angles2.emplace_back(theta2, std::pair<int, int>(i, j));
}
}
// Sort angles.
- std::sort(angles1.begin(), angles1.end(), [](const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);});
- std::sort(angles2.begin(), angles2.end(), [](const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);});
+ std::sort(angles1.begin(), angles1.end(),
+ [](const std::pair<double, std::pair<int, int> >& p1,
+ const std::pair<double, std::pair<int, int> >& p2) { return (p1.first < p2.first); });
+ std::sort(angles2.begin(), angles2.end(),
+ [](const std::pair<double, std::pair<int, int> >& p1,
+ const std::pair<double, std::pair<int, int> >& p2) { return (p1.first < p2.first); });
// Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
std::vector<int> orderp1, orderp2;
- for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
- std::sort( orderp1.begin(), orderp1.end(), [&](int i, int j){ if(diagram1[i].second != diagram1[j].second) return (diagram1[i].second < diagram1[j].second); else return (diagram1[i].first > diagram1[j].first); } );
- std::sort( orderp2.begin(), orderp2.end(), [&](int i, int j){ if(diagram2[i].second != diagram2[j].second) return (diagram2[i].second < diagram2[j].second); else return (diagram2[i].first > diagram2[j].first); } );
+ for (int i = 0; i < num_pts_dgm; i++) {
+ orderp1.push_back(i);
+ orderp2.push_back(i);
+ }
+ std::sort(orderp1.begin(), orderp1.end(), [&](int i, int j) {
+ if (diagram1[i].second != diagram1[j].second)
+ return (diagram1[i].second < diagram1[j].second);
+ else
+ return (diagram1[i].first > diagram1[j].first);
+ });
+ std::sort(orderp2.begin(), orderp2.end(), [&](int i, int j) {
+ if (diagram2[i].second != diagram2[j].second)
+ return (diagram2[i].second < diagram2[j].second);
+ else
+ return (diagram2[i].first > diagram2[j].first);
+ });
// Find the inverses of the orders.
- std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
- for(int i = 0; i < num_pts_dgm; i++){ order1[orderp1[i]] = i; order2[orderp2[i]] = i; }
+ std::vector<int> order1(num_pts_dgm);
+ std::vector<int> order2(num_pts_dgm);
+ for (int i = 0; i < num_pts_dgm; i++) {
+ order1[orderp1[i]] = i;
+ order2[orderp2[i]] = i;
+ }
// Record all inversions of points in the orders as theta varies along the positive half-disk.
- std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
- std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);
+ std::vector<std::vector<std::pair<int, double> > > anglePerm1(num_pts_dgm);
+ std::vector<std::vector<std::pair<int, double> > > anglePerm2(num_pts_dgm);
int m1 = angles1.size();
- for (int i = 0; i < m1; i++){
- double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
- anglePerm1[order1[p]].emplace_back(p,theta);
- anglePerm1[order1[q]].emplace_back(q,theta);
- int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
+ for (int i = 0; i < m1; i++) {
+ double theta = angles1[i].first;
+ int p = angles1[i].second.first;
+ int q = angles1[i].second.second;
+ anglePerm1[order1[p]].emplace_back(p, theta);
+ anglePerm1[order1[q]].emplace_back(q, theta);
+ int a = order1[p];
+ int b = order1[q];
+ order1[p] = b;
+ order1[q] = a;
}
int m2 = angles2.size();
- for (int i = 0; i < m2; i++){
- double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
- anglePerm2[order2[p]].emplace_back(p,theta);
- anglePerm2[order2[q]].emplace_back(q,theta);
- int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
+ for (int i = 0; i < m2; i++) {
+ double theta = angles2[i].first;
+ int p = angles2[i].second.first;
+ int q = angles2[i].second.second;
+ anglePerm2[order2[p]].emplace_back(p, theta);
+ anglePerm2[order2[q]].emplace_back(q, theta);
+ int a = order2[p];
+ int b = order2[q];
+ order2[p] = b;
+ order2[q] = a;
}
- for (int i = 0; i < num_pts_dgm; i++){
- anglePerm1[order1[i]].emplace_back(i,pi/2);
- anglePerm2[order2[i]].emplace_back(i,pi/2);
+ for (int i = 0; i < num_pts_dgm; i++) {
+ anglePerm1[order1[i]].emplace_back(i, pi / 2);
+ anglePerm2[order2[i]].emplace_back(i, pi / 2);
}
// Compute the SW distance with the list of inversions.
- for (int i = 0; i < num_pts_dgm; i++){
- std::vector<std::pair<int,double> > u,v; u = anglePerm1[i]; v = anglePerm2[i];
- double theta1, theta2; theta1 = -pi/2;
- unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(u[ku].second,v[kv].second);
- while(theta1 != pi/2){
- if(diagram1[u[ku].first].first != diagram2[v[kv].first].first || diagram1[u[ku].first].second != diagram2[v[kv].first].second)
- if(theta1 != theta2)
- sw += compute_int(theta1, theta2, u[ku].first, v[kv].first, diagram1, diagram2);
+ for (int i = 0; i < num_pts_dgm; i++) {
+ std::vector<std::pair<int, double> > u, v;
+ u = anglePerm1[i];
+ v = anglePerm2[i];
+ double theta1, theta2;
+ theta1 = -pi / 2;
+ unsigned int ku, kv;
+ ku = 0;
+ kv = 0;
+ theta2 = std::min(u[ku].second, v[kv].second);
+ while (theta1 != pi / 2) {
+ if (diagram1[u[ku].first].first != diagram2[v[kv].first].first ||
+ diagram1[u[ku].first].second != diagram2[v[kv].first].second)
+ if (theta1 != theta2) sw += compute_int(theta1, theta2, u[ku].first, v[kv].first, diagram1, diagram2);
theta1 = theta2;
- if ( (theta2 == u[ku].second) && ku < u.size()-1 ) ku++;
- if ( (theta2 == v[kv].second) && kv < v.size()-1 ) kv++;
+ if ((theta2 == u[ku].second) && ku < u.size() - 1) ku++;
+ if ((theta2 == v[kv].second) && kv < v.size() - 1) kv++;
theta2 = std::min(u[ku].second, v[kv].second);
}
}
- }
-
-
- else{
-
- double step = pi/this->approx; std::vector<double> v1, v2;
- for (int i = 0; i < this->approx; i++){
-
- v1.clear(); v2.clear();
- std::merge(this->projections[i].begin(), this->projections[i].end(), second.projections_diagonal[i].begin(), second.projections_diagonal[i].end(), std::back_inserter(v1));
- std::merge(second.projections[i].begin(), second.projections[i].end(), this->projections_diagonal[i].begin(), this->projections_diagonal[i].end(), std::back_inserter(v2));
-
- int n = v1.size(); double f = 0;
- for (int j = 0; j < n; j++) f += std::abs(v1[j] - v2[j]);
- sw += f*step;
-
+ } else {
+ double step = pi / this->approx;
+ std::vector<double> v1, v2;
+ for (int i = 0; i < this->approx; i++) {
+ v1.clear();
+ v2.clear();
+ std::merge(this->projections[i].begin(), this->projections[i].end(), second.projections_diagonal[i].begin(),
+ second.projections_diagonal[i].end(), std::back_inserter(v1));
+ std::merge(second.projections[i].begin(), second.projections[i].end(), this->projections_diagonal[i].begin(),
+ this->projections_diagonal[i].end(), std::back_inserter(v2));
+
+ int n = v1.size();
+ double f = 0;
+ for (int j = 0; j < n; j++) f += std::abs(v1[j] - v2[j]);
+ sw += f * step;
}
}
- return sw/pi;
+ return sw / pi;
}
public:
-
/** \brief Sliced Wasserstein kernel constructor.
* \implements Topological_data_with_distances, Real_valued_topological_data, Topological_data_with_scalar_product
* \ingroup Sliced_Wasserstein
*
* @param[in] _diagram persistence diagram.
* @param[in] _sigma bandwidth parameter.
- * @param[in] _approx number of directions used to approximate the integral in the Sliced Wasserstein distance, set to -1 for random perturbation. If positive, then projections of the diagram
- * points on all directions are stored in memory to reduce computation time.
+ * @param[in] _approx number of directions used to approximate the integral in the Sliced Wasserstein distance, set
+ * to -1 for random perturbation. If positive, then projections of the diagram points on all
+ * directions are stored in memory to reduce computation time.
*
*/
- Sliced_Wasserstein(const Persistence_diagram & _diagram, double _sigma = 1.0, int _approx = 10):diagram(_diagram), approx(_approx), sigma(_sigma) {build_rep();}
+ Sliced_Wasserstein(const Persistence_diagram& _diagram, double _sigma = 1.0, int _approx = 10)
+ : diagram(_diagram), approx(_approx), sigma(_sigma) {
+ build_rep();
+ }
/** \brief Evaluation of the kernel on a pair of diagrams.
* \ingroup Sliced_Wasserstein
@@ -282,9 +365,10 @@ class Sliced_Wasserstein {
* @param[in] second other instance of class Sliced_Wasserstein.
*
*/
- double compute_scalar_product(const Sliced_Wasserstein & second) const {
- GUDHI_CHECK(this->sigma == second.sigma, std::invalid_argument("Error: different sigma values for representations"));
- return std::exp(-compute_sliced_wasserstein_distance(second)/(2*this->sigma*this->sigma));
+ double compute_scalar_product(const Sliced_Wasserstein& second) const {
+ GUDHI_CHECK(this->sigma == second.sigma,
+ std::invalid_argument("Error: different sigma values for representations"));
+ return std::exp(-compute_sliced_wasserstein_distance(second) / (2 * this->sigma * this->sigma));
}
/** \brief Evaluation of the distance between images of diagrams in the Hilbert space of the kernel.
@@ -294,13 +378,14 @@ class Sliced_Wasserstein {
* @param[in] second other instance of class Sliced_Wasserstein.
*
*/
- double distance(const Sliced_Wasserstein & second) const {
- GUDHI_CHECK(this->sigma == second.sigma, std::invalid_argument("Error: different sigma values for representations"));
- return std::pow(this->compute_scalar_product(*this) + second.compute_scalar_product(second)-2*this->compute_scalar_product(second), 0.5);
+ double distance(const Sliced_Wasserstein& second) const {
+ GUDHI_CHECK(this->sigma == second.sigma,
+ std::invalid_argument("Error: different sigma values for representations"));
+ return std::sqrt(this->compute_scalar_product(*this) + second.compute_scalar_product(second) -
+ 2 * this->compute_scalar_product(second));
}
-
-}; // class Sliced_Wasserstein
+}; // class Sliced_Wasserstein
} // namespace Persistence_representations
} // namespace Gudhi