summaryrefslogtreecommitdiff
path: root/src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp')
-rw-r--r--src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp38
1 files changed, 19 insertions, 19 deletions
diff --git a/src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp b/src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp
index 45757002..3bec8830 100644
--- a/src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp
+++ b/src/Persistent_cohomology/benchmark/performance_rips_persistence.cpp
@@ -49,7 +49,7 @@ void timing_persistence(FilteredComplex & cpx
* with a Hasse diagram. The Hasse diagram represents explicitly all
* codimension 1 incidence relations in the complex, and hence leads to
* a faster computation of persistence because boundaries are precomputed.
- * Hovewer, the simplex tree may be constructed directly from a point cloud and
+ * However, the simplex tree may be constructed directly from a point cloud and
* is more compact.
* We compute persistent homology with coefficient fields Z/2Z and Z/1223Z.
* We present also timings for the computation of multi-field persistent
@@ -74,7 +74,7 @@ int main(int argc, char * argv[]) {
Rips_complex rips_complex_from_file(off_reader.get_point_cloud(), threshold, Gudhi::Euclidean_distance());
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << "Compute Rips graph in " << elapsed_sec << " ms.\n";
+ std::clog << "Compute Rips graph in " << elapsed_sec << " ms.\n";
// Construct the Rips complex in a Simplex Tree
Simplex_tree st;
@@ -86,16 +86,16 @@ int main(int argc, char * argv[]) {
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << "Compute Rips complex in " << elapsed_sec << " ms.\n";
- std::cout << " - dimension = " << st.dimension() << std::endl;
- std::cout << " - number of simplices = " << st.num_simplices() << std::endl;
+ std::clog << "Compute Rips complex in " << elapsed_sec << " ms.\n";
+ std::clog << " - dimension = " << st.dimension() << std::endl;
+ std::clog << " - number of simplices = " << st.num_simplices() << std::endl;
// Sort the simplices in the order of the filtration
start = std::chrono::system_clock::now();
st.initialize_filtration();
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << "Order the simplices of the filtration in " << elapsed_sec << " ms.\n";
+ std::clog << "Order the simplices of the filtration in " << elapsed_sec << " ms.\n";
// Copy the keys inside the simplices
start = std::chrono::system_clock::now();
@@ -106,22 +106,22 @@ int main(int argc, char * argv[]) {
}
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << "Copied the keys inside the simplices in " << elapsed_sec << " ms.\n";
+ std::clog << "Copied the keys inside the simplices in " << elapsed_sec << " ms.\n";
// Convert the simplex tree into a hasse diagram
start = std::chrono::system_clock::now();
Gudhi::Hasse_complex<> hcpx(st);
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << "Convert the simplex tree into a Hasse diagram in " << elapsed_sec << " ms.\n";
+ std::clog << "Convert the simplex tree into a Hasse diagram in " << elapsed_sec << " ms.\n";
- std::cout << "Timings when using a simplex tree: \n";
+ std::clog << "Timings when using a simplex tree: \n";
timing_persistence(st, p);
timing_persistence(st, q);
timing_persistence(st, p, q);
- std::cout << "Timings when using a Hasse complex: \n";
+ std::clog << "Timings when using a Hasse complex: \n";
timing_persistence(hcpx, p);
timing_persistence(hcpx, q);
timing_persistence(hcpx, p, q);
@@ -130,7 +130,7 @@ int main(int argc, char * argv[]) {
}
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << "Running the complex destructors in " << elapsed_sec << " ms.\n";
+ std::clog << "Running the complex destructors in " << elapsed_sec << " ms.\n";
return 0;
}
@@ -145,13 +145,13 @@ timing_persistence(FilteredComplex & cpx
Gudhi::persistent_cohomology::Persistent_cohomology< FilteredComplex, Field_Zp > pcoh(cpx);
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Initialize pcoh in " << elapsed_sec << " ms.\n";
+ std::clog << " Initialize pcoh in " << elapsed_sec << " ms.\n";
// initializes the coefficient field for homology
start = std::chrono::system_clock::now();
pcoh.init_coefficients(p);
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Initialize the coefficient field in " << elapsed_sec << " ms.\n";
+ std::clog << " Initialize the coefficient field in " << elapsed_sec << " ms.\n";
start = std::chrono::system_clock::now();
@@ -159,12 +159,12 @@ timing_persistence(FilteredComplex & cpx
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Compute persistent homology in Z/" << p << "Z in " << elapsed_sec << " ms.\n";
+ std::clog << " Compute persistent homology in Z/" << p << "Z in " << elapsed_sec << " ms.\n";
start = std::chrono::system_clock::now();
}
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Run the persistence destructors in " << elapsed_sec << " ms.\n";
+ std::clog << " Run the persistence destructors in " << elapsed_sec << " ms.\n";
}
template< typename FilteredComplex>
@@ -179,13 +179,13 @@ timing_persistence(FilteredComplex & cpx
Gudhi::persistent_cohomology::Persistent_cohomology< FilteredComplex, Multi_field > pcoh(cpx);
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Initialize pcoh in " << elapsed_sec << " ms.\n";
+ std::clog << " Initialize pcoh in " << elapsed_sec << " ms.\n";
// initializes the coefficient field for homology
start = std::chrono::system_clock::now();
pcoh.init_coefficients(p, q);
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Initialize the coefficient field in " << elapsed_sec << " ms.\n";
+ std::clog << " Initialize the coefficient field in " << elapsed_sec << " ms.\n";
// compute persistent homology, disgarding persistent features of life shorter than min_persistence
start = std::chrono::system_clock::now();
@@ -194,11 +194,11 @@ timing_persistence(FilteredComplex & cpx
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Compute multi-field persistent homology in all coefficient fields Z/pZ "
+ std::clog << " Compute multi-field persistent homology in all coefficient fields Z/pZ "
<< "with p in [" << p << ";" << q << "] in " << elapsed_sec << " ms.\n";
start = std::chrono::system_clock::now();
}
end = std::chrono::system_clock::now();
elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
- std::cout << " Run the persistence destructors in " << elapsed_sec << " ms.\n";
+ std::clog << " Run the persistence destructors in " << elapsed_sec << " ms.\n";
}