summaryrefslogtreecommitdiff
path: root/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h')
-rw-r--r--src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h772
1 files changed, 772 insertions, 0 deletions
diff --git a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h
new file mode 100644
index 00000000..cd4a2bcc
--- /dev/null
+++ b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h
@@ -0,0 +1,772 @@
+ /* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Clément Maria
+ *
+ * Copyright (C) 2014 INRIA Sophia Antipolis-Méditerranée (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef _PERSISTENCECOMPUTATION_SIMPLEXTREE_
+#define _PERSISTENCECOMPUTATION_SIMPLEXTREE_
+
+#include <boost/tuple/tuple.hpp>
+#include <boost/intrusive/set.hpp>
+#include <boost/pending/disjoint_sets.hpp>
+#include <boost/intrusive/list.hpp>
+#include <boost/pool/object_pool.hpp>
+#include "gudhi/Persistent_cohomology/Persistent_cohomology_column.h"
+#include "gudhi/Persistent_cohomology/Field_Zp.h"
+
+namespace Gudhi{
+
+/** \defgroup persistent_cohomology Persistent Cohomology Package
+ *
+ * Computation of persistent cohomology using the algorithm of
+ * \cite DBLP:journals/dcg/SilvaMV11 and \cite DBLP:journals/corr/abs-1208-5018
+ * and the Compressed Annotation Matrix
+ * implementation of \cite DBLP:conf/esa/BoissonnatDM13
+ *
+ *
+ *
+
+ The theory of homology consists in attaching to a topological space a sequence of
+ (homology) groups,
+ capturing global topological features
+ like connected components, holes, cavities, etc. Persistent homology studies the evolution
+ -- birth, life and death -- of
+ these features when the topological space is changing. Consequently, the theory is essentially
+ composed of three elements:
+ topological spaces, their homology groups and an evolution scheme.
+
+ <DT>Topological Spaces:</DT>
+ Topological spaces are represented by simplicial complexes.
+ Let \f$V = \{1, \cdots ,|V|\}\f$ be a set of <EM>vertices</EM>.
+ A <EM>simplex</EM> \f$\sigma\f$ is a subset of vertices
+ \f$\sigma \subseteq V\f$. A <EM>simplicial complex</EM> \f$\mathbf{K}\f$
+ on \f$V\f$ is a collection of simplices \f$\{\sigma\}\f$,
+ \f$\sigma \subseteq V\f$, such that \f$\tau \subseteq \sigma \in \mathbf{K}
+ \Rightarrow \tau \in \mathbf{K}\f$. The dimension \f$n=|\sigma|-1\f$ of \f$\sigma\f$
+ is its number of elements minus 1. A <EM>filtration</EM> of a simplicial complex is
+ a function \f$f:\mathbf{K} \rightarrow \mathbb{R}\f$ satisfying \f$f(\tau)\leq
+ f(\sigma)\f$ whenever \f$\tau \subseteq \sigma\f$.
+
+ We define the concept FilteredComplex which enumerates the requirements for a class
+ to represent a filtered complex from which persistent homology may be computed.
+ We use the vocabulary of simplicial complexes, but the concept
+ is valid for any type of cell complex. The main requirements
+ are the definition of:
+ \li type <CODE>Indexing_tag</CODE>, which is a model of the concept
+ <CODE>IndexingTag</CODE>,
+ describing the nature of the indexing scheme,
+ \li type Simplex_handle to manipulate simplices,
+ \li method <CODE>int dimension(Simplex_handle)</CODE> returning
+ the dimension of a simplex,
+ \li type and method <CODE>Boundary_simplex_range
+ boundary_simplex_range(Simplex_handle)</CODE> that returns
+ a range giving access to the codimension 1 subsimplices of the
+ input simplex, as-well-as the coefficients \f$(-1)^i\f$ in the
+ definition of the operator \f$\partial\f$. The iterators have
+ value type <CODE>Simplex_handle</CODE>,
+ \li type and method
+ <CODE>Filtration_simplex_range filtration_simplex_range ()</CODE>
+ that returns a range giving
+ access to all the simplices of the complex read in the order
+ assigned by the indexing scheme,
+ \li type and method
+ <CODE>Filtration_value filtration (Simplex_handle)</CODE> that returns the value of
+ the filtration on the simplex represented by the handle.
+
+ <DT>Homology:</DT>
+ For a ring \f$\mathcal{R}\f$, the group of <EM>n-chains</EM>,
+ denoted \f$\mathbf{C}_n(\mathbf{K},\mathcal{R})\f$, of \f$\mathbf{K}\f$ is the
+ group of formal sums of
+ n-simplices with \f$\mathcal{R}\f$ coefficients. The <EM>boundary operator</EM> is a
+ linear operator
+ \f$\partial_n: \mathbf{C}_n(\mathbf{K},\mathcal{R}) \rightarrow \mathbf{C}_{n-1}(\mathbf{K},\mathcal{R})\f$
+ such that \f$\partial_n \sigma = \partial_n [v_0, \cdots , v_n] =
+ \sum_{i=0}^n (-1)^{i}[v_0,\cdots ,\widehat{v_i}, \cdots,v_n]\f$,
+ where \f$\widehat{v_i}\f$ means \f$v_i\f$ is omitted from the list. The chain
+ groups form a sequence:
+
+ \f[\cdots \ \ \mathbf{C}_n(\mathbf{K},\mathcal{R}) \xrightarrow{\ \partial_n\ } \mathbf{C}_{n-1}(\mathbf{K},\mathcal{R})
+ \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\ \partial_2 \ }
+ \mathbf{C}_1(\mathbf{K},\mathcal{R}) \xrightarrow{\ \partial_1 \ } \mathbf{C}_0(\mathbf{K},\mathcal{R}) \f]
+
+ of finitely many groups \f$\mathbf{C}_n(\mathbf{K},\mathcal{R})\f$ and homomorphisms
+ \f$\partial_n\f$, indexed by the dimension \f$n \geq 0\f$.
+ The boundary operators satisfy the property \f$\partial_n \circ \partial_{n+1}=0\f$
+ for every \f$n > 0\f$
+ and we define the homology groups:
+
+ \f[\mathbf{H}_n(\mathbf{K},\mathcal{R}) = \ker \partial_n / \mathrm{im} \ \partial_{n+1}\f]
+
+ We refer to \cite Munkres-elementsalgtop1984 for an introduction to homology
+ theory and to \cite DBLP:books/daglib/0025666 for an introduction to persistent homology.
+
+ <DT>Indexing Scheme:</DT>
+ "Changing" a simplicial complex consists in applying a simplicial map.
+ An <EM>indexing scheme</EM> is a directed graph together with a traversal
+ order, such that two
+ consecutive nodes in the graph are connected by an arrow (either forward or backward).
+ The nodes represent simplicial complexes and the directed edges simplicial maps.
+
+ From the computational point of view, there are two types of indexing schemes of
+ interest
+ in persistent homology: <EM>linear</EM> ones
+ \f$\bullet \longrightarrow \bullet \longrightarrow \cdots \longrightarrow \bullet
+ \longrightarrow \bullet\f$
+ in persistent homology \cite DBLP:journals/dcg/ZomorodianC05 ,
+ and <EM>zigzag</EM> ones
+ \f$\bullet \longrightarrow \bullet \longleftarrow \cdots
+ \longrightarrow \bullet
+ \longleftarrow \bullet \f$ in zigzag persistent
+ homology \cite DBLP:journals/focm/CarlssonS10.
+ These indexing schemes have a natural left-to-right traversal order, and we
+ describe them with ranges and iterators.
+ In the current release of the Gudhi library, only the linear case is implemented.
+
+ In the following, we consider the case where the indexing scheme is induced
+ by a filtration.
+ Ordering the simplices
+ by increasing filtration values (breaking ties so as a simplex appears after
+ its subsimplices of same filtration value) provides an indexing scheme.
+
+
+
+ <DT>Implementations:</DT>
+ We use the <EM>Compressed Annotation Matrix</EM> of \cite DBLP:conf/esa/BoissonnatDM13 to
+ implement the
+ persistent cohomology algorithm of \cite DBLP:journals/dcg/SilvaMV11
+ and \cite DBLP:conf/compgeom/DeyFW14 for persistence in the class Persistent_cohomology.
+
+ The coefficient fields available as models of CoefficientField are Field_Zp
+ for \f$\mathbb{Z}_p\f$ (for any prime p) and Multi_field for the multi-field persistence algorithm
+ -- computing persistence simultaneously in various coefficient fields -- described
+ in \cite boissonnat:hal-00922572.
+
+
+ \author Clément Maria
+ \version 1.0
+ \date 2014
+ \copyright GNU General Public License v3.
+ @{
+ */
+
+/** \brief Computes the persistent cohomology of a filtered complex.
+*
+* The computation is implemented with a Compressed Annotation Matrix
+* (CAM)\cite DBLP:conf/esa/BoissonnatDM13,
+* and is adapted to the computation of Multi-Field Persistent Homology (MF)
+* \cite boissonnat:hal-00922572 .
+*
+* \implements PersistentHomology
+*
+*/
+//Memory allocation policy: classic, use a mempool, etc.*/
+ template < class FilteredComplex
+ , class CoefficientField
+ > //to do mem allocation policy: classic, mempool, etc.
+ class Persistent_cohomology {
+ public:
+
+ typedef FilteredComplex Complex_ds;
+ // Data attached to each simplex to interface with a Property Map.
+ typedef typename Complex_ds::Simplex_key Simplex_key;
+ typedef typename Complex_ds::Simplex_handle Simplex_handle;
+ typedef typename Complex_ds::Filtration_value Filtration_value;
+ typedef typename CoefficientField::Element Arith_element;
+// Compressed Annotation Matrix types:
+ // Column type
+ typedef Persistent_cohomology_column < Simplex_key
+ , Arith_element
+ > Column; // contains 1 set_hook
+ // Cell type
+ typedef typename Column::Cell Cell; // contains 2 list_hooks
+ // Remark: constant_time_size must be false because base_hook_cam_h has auto_unlink link_mode
+ typedef boost::intrusive::list < Cell
+ , boost::intrusive::constant_time_size<false>
+ , boost::intrusive::base_hook< base_hook_cam_h >
+ > Hcell;
+
+ typedef boost::intrusive::set < Column
+ , boost::intrusive::constant_time_size<false>
+ > Cam;
+// Sparse column type for the annotation of the boundary of an element.
+ typedef std::vector< std::pair<Simplex_key
+ , Arith_element > > A_ds_type;
+// Persistent interval type. The Arith_element field is used for the multi-field framework.
+ typedef boost::tuple< Simplex_handle
+ , Simplex_handle
+ , Arith_element > Persistent_interval;
+
+/** \brief Initializes the Persistent_cohomology class.
+ *
+ * @param[in] cpx Complex for which the persistent homology is compiuted.
+ cpx is a model of FilteredComplex
+ *
+ * @param[in] persistence_dim_max if true, the persistent homology for the maximal dimension in the
+ * complex is computed. If false, it is ignored. Default is false.
+ */
+Persistent_cohomology ( Complex_ds & cpx
+ , bool persistence_dim_max = false )
+: cpx_ (&cpx)
+, dim_max_(cpx.dimension()) // upper bound on the dimension of the simplices
+, coeff_field_() // initialize the field coefficient structure.
+, ds_rank_ (cpx_->num_simplices()) // union-find
+, ds_parent_(cpx_->num_simplices()) // union-find
+, ds_repr_ (cpx_->num_simplices(),NULL) // union-find -> annotation vectors
+, dsets_(&ds_rank_[0],&ds_parent_[0]) // union-find
+, cam_() // collection of annotation vectors
+, zero_cocycles_() // union-find -> Simplex_key of creator for 0-homology
+, transverse_idx_() // key -> row
+, persistent_pairs_()
+, interval_length_policy(&cpx,0)
+, column_pool_(new boost::object_pool< Column > ()) // memory pools for the CAM
+, cell_pool_(new boost::object_pool< Cell > ())
+{
+ if( persistence_dim_max ) { ++dim_max_; }
+ Simplex_key idx_fil = 0;
+ for(auto & sh : cpx_->filtration_simplex_range())
+ {
+ cpx_->assign_key(sh,idx_fil); ++idx_fil;
+ dsets_.make_set(cpx_->key(sh));
+ }
+}
+
+~Persistent_cohomology()
+{
+//Clean the remaining columns in the matrix.
+ for(auto & cam_ref : cam_) { cam_ref.col_.clear(); }
+//Clean the transversal lists
+ for( auto & transverse_ref : transverse_idx_ )
+ { transverse_ref.second.row_->clear(); delete transverse_ref.second.row_; }
+//Clear the memory pools
+ delete column_pool_;
+ delete cell_pool_;
+}
+
+private:
+struct length_interval {
+ length_interval ( Complex_ds * cpx
+ , Filtration_value min_length)
+ : cpx_(cpx)
+ , min_length_(min_length) {}
+
+ bool operator()(Simplex_handle sh1, Simplex_handle sh2)
+ { return cpx_->filtration(sh2) - cpx_->filtration(sh1) > min_length_; }
+
+ void set_length(Filtration_value new_length) { min_length_ = new_length; }
+
+ Complex_ds * cpx_;
+ Filtration_value min_length_;
+};
+
+
+public:
+/** \brief Initializes the coefficient field.*/
+void init_coefficients( int charac ) { coeff_field_.init(charac); }
+/** \brief Initializes the coefficient field for multi-field persistent homology.*/
+void init_coefficients( int charac_min
+ , int charac_max ) { coeff_field_.init(charac_min,charac_max); }
+
+/** \brief Compute the persistent homology of the filtered simplicial
+ * complex.
+ *
+ * @param[in] min_interval_length the computation disgards all intervals of length
+ * less or equal than min_interval_length
+ *
+ * Assumes that the filtration provided by the simplicial complex is
+ * valid. Undefined behavior otherwise. */
+void compute_persistent_cohomology ( Filtration_value min_interval_length = 0 )
+{
+ interval_length_policy.set_length(min_interval_length);
+ // Compute all finite intervals
+ for( auto sh : cpx_->filtration_simplex_range() )
+ {
+ int dim_simplex = cpx_->dimension(sh);
+ switch(dim_simplex) {
+ case 0 : break;
+ case 1 : update_cohomology_groups_edge( sh ) ; break;
+ default: update_cohomology_groups( sh, dim_simplex ); break;
+ }
+ }
+ // Compute infinite intervals of dimension 0
+ Simplex_key key;
+ for(auto v_sh : cpx_->skeleton_simplex_range(0)) //for all 0-dimensional simplices
+ {
+ key = cpx_->key(v_sh);
+
+ if( ds_parent_[key] == key //root of its tree
+ && zero_cocycles_.find(key) == zero_cocycles_.end() )
+ {
+ persistent_pairs_.push_back( Persistent_interval ( cpx_->simplex(key)
+ , cpx_->null_simplex()
+ , coeff_field_.characteristic() )
+ );
+ }
+ }
+ for( auto zero_idx : zero_cocycles_ )
+ {
+ persistent_pairs_.push_back( Persistent_interval ( cpx_->simplex(zero_idx.second)
+ , cpx_->null_simplex()
+ , coeff_field_.characteristic() )
+ );
+ }
+// Compute infinite interval of dimension > 0
+ for(auto cocycle : transverse_idx_)
+ {
+ persistent_pairs_.push_back( Persistent_interval ( cpx_->simplex (cocycle.first)
+ , cpx_->null_simplex()
+ , cocycle.second.characteristics_ ) );
+ }
+}
+
+
+
+private:
+/** \brief Update the cohomology groups under the insertion of an edge.
+ *
+ * The 0-homology is maintained with a simple Union-Find data structure, which
+ * explains the existance of a specific function of edge insertions. */
+void update_cohomology_groups_edge ( Simplex_handle sigma )
+{
+ Simplex_handle u,v;
+ boost::tie(u,v) = cpx_->endpoints(sigma);
+
+ Simplex_key ku = dsets_.find_set( cpx_->key(u) );
+ Simplex_key kv = dsets_.find_set( cpx_->key(v) );
+
+ if(ku != kv ) { // Destroy a connected component
+ dsets_.link(ku,kv);
+ // Keys of the simplices which created the connected components containing
+ // respectively u and v.
+ Simplex_key idx_coc_u, idx_coc_v;
+ auto map_it_u = zero_cocycles_.find(ku);
+ // If the index of the cocycle representing the class is already ku.
+ if (map_it_u == zero_cocycles_.end()) { idx_coc_u = ku; }
+ else { idx_coc_u = map_it_u->second; }
+
+ auto map_it_v = zero_cocycles_.find(kv);
+ // If the index of the cocycle representing the class is already kv.
+ if (map_it_v == zero_cocycles_.end()) { idx_coc_v = kv; }
+ else { idx_coc_v = map_it_v->second; }
+
+ if(cpx_->filtration(cpx_->simplex(idx_coc_u))
+ < cpx_->filtration(cpx_->simplex(idx_coc_v)) ) // Kill cocycle [idx_coc_v], which is younger.
+ {
+ if(interval_length_policy(cpx_->simplex(idx_coc_v),sigma)) {
+ persistent_pairs_.push_back ( Persistent_interval ( cpx_->simplex(idx_coc_v)
+ , sigma
+ , coeff_field_.characteristic()
+ )
+ );
+ }
+ // Maintain the index of the 0-cocycle alive.
+ if( kv != idx_coc_v ) { zero_cocycles_.erase( map_it_v ); }
+ if( kv == dsets_.find_set(kv) ) {
+ if( ku != idx_coc_u ) { zero_cocycles_.erase( map_it_u ); }
+ zero_cocycles_[kv] = idx_coc_u;
+ }
+ }
+ else // Kill cocycle [idx_coc_u], which is younger.
+ {
+ if(interval_length_policy(cpx_->simplex(idx_coc_u),sigma)) {
+ persistent_pairs_.push_back ( Persistent_interval ( cpx_->simplex(idx_coc_u)
+ , sigma
+ , coeff_field_.characteristic()
+ )
+ );
+ }
+ // Maintain the index of the 0-cocycle alive.
+ if( ku != idx_coc_u ) { zero_cocycles_.erase( map_it_u ); }
+ if( ku == dsets_.find_set(ku) ) {
+ if( kv != idx_coc_v ) { zero_cocycles_.erase( map_it_v ); }
+ zero_cocycles_[ku] = idx_coc_v;
+ }
+ }
+ cpx_->assign_key(sigma,cpx_->null_key());
+ }
+ else { // If ku == kv, same connected component: create a 1-cocycle class.
+ create_cocycle( sigma, coeff_field_.multiplicative_identity(), coeff_field_.characteristic() );
+ }
+}
+
+/*
+ * Compute the annotation of the boundary of a simplex.
+ */
+void annotation_of_the_boundary(std::map< Simplex_key, Arith_element > & map_a_ds
+ , Simplex_handle sigma
+ , int dim_sigma )
+{
+ // traverses the boundary of sigma, keeps track of the annotation vectors,
+ // with multiplicity, in a map.
+ std::map < Column *, int > annotations_in_boundary;
+ std::pair < typename std::map< Column *, int >::iterator
+ , bool > result_insert_bound;
+ int sign = 1 - 2 * (dim_sigma % 2); // \in {-1,1} provides the sign in the
+ // alternate sum in the boundary.
+ Simplex_key key; Column * curr_col;
+
+ for( auto sh : cpx_->boundary_simplex_range(sigma) )
+ {
+ key = cpx_->key(sh);
+ if( key != cpx_->null_key() ) // A simplex with null_key is a killer, and have null annotation
+ { // vector.
+ // Find its annotation vector
+ curr_col = ds_repr_[ dsets_.find_set(key) ];
+ if( curr_col != NULL )
+ { // and insert it in annotations_in_boundary with multyiplicative factor "sign".
+ result_insert_bound =
+ annotations_in_boundary.insert(std::pair<Column *,int>(curr_col,sign));
+ if( !(result_insert_bound.second) ) { result_insert_bound.first->second += sign; }
+ }
+ }
+ sign = -sign;
+ }
+ // Sum the annotations with multiplicity, using a map<key,coeff>
+ // to represent a sparse vector.
+ std::pair < typename std::map < Simplex_key, Arith_element >::iterator
+ , bool > result_insert_a_ds;
+
+ for( auto ann_ref : annotations_in_boundary )
+ {
+ if(ann_ref.second != coeff_field_.additive_identity()) // For all columns in the boundary,
+ {
+ for( auto cell_ref : ann_ref.first->col_ ) // insert every cell in map_a_ds with multiplicity
+ {
+ Arith_element w_y =
+ coeff_field_.times(cell_ref.coefficient_ , ann_ref.second); //coefficient * multiplicity
+
+ if( w_y != coeff_field_.additive_identity() ) // if != 0
+ {
+ result_insert_a_ds = map_a_ds.insert(std::pair< Simplex_key
+ , Arith_element >(cell_ref.key_ , w_y));
+ if( !(result_insert_a_ds.second) ) //if cell_ref.key_ already a Key in map_a_ds
+ {
+ coeff_field_.plus_equal(result_insert_a_ds.first->second, w_y);
+ if(result_insert_a_ds.first->second == coeff_field_.additive_identity())
+ { map_a_ds.erase(result_insert_a_ds.first); }
+ }
+ }
+ }
+ }
+ }
+}
+
+/*
+ * Update the cohomology groups under the insertion of a simplex.
+ */
+void update_cohomology_groups ( Simplex_handle sigma
+ , int dim_sigma )
+{
+//Compute the annotation of the boundary of sigma:
+ std::map< Simplex_key, Arith_element > map_a_ds;
+ annotation_of_the_boundary(map_a_ds, sigma, dim_sigma );
+// Update the cohomology groups:
+ if( map_a_ds.empty() ) { // sigma is a creator in all fields represented in coeff_field_
+ if(dim_sigma < dim_max_) { create_cocycle ( sigma
+ , coeff_field_.multiplicative_identity()
+ , coeff_field_.characteristic() );}
+ }
+ else { // sigma is a destructor in at least a field in coeff_field_
+ // Convert map_a_ds to a vector
+ A_ds_type a_ds; //admits reverse iterators
+ for ( auto map_a_ds_ref : map_a_ds )
+ {
+ a_ds.push_back( std::pair< Simplex_key
+ , Arith_element> ( map_a_ds_ref.first
+ , map_a_ds_ref.second ));
+ }
+
+
+ Arith_element inv_x, charac;
+ Arith_element prod = coeff_field_.characteristic(); // Product of characteristic of the fields
+ for( auto a_ds_rit = a_ds.rbegin();
+ (a_ds_rit != a_ds.rend()) && (prod != coeff_field_.multiplicative_identity());
+ ++a_ds_rit )
+ {
+ std::tie(inv_x,charac) = coeff_field_.inverse ( a_ds_rit->second
+ , prod );
+
+ if( inv_x != coeff_field_.additive_identity() )
+ {
+ destroy_cocycle ( sigma
+ , a_ds
+ , a_ds_rit->first
+ , inv_x
+ , charac );
+ prod /= charac;
+ }
+ }
+ if( prod != coeff_field_.multiplicative_identity() && dim_sigma < dim_max_ )
+ { create_cocycle( sigma , coeff_field_.multiplicative_identity(prod), prod ); }
+ }
+}
+
+/* \brief Create a new cocycle class.
+ *
+ * The class is created by the insertion of the simplex sigma.
+ * The methods adds a cocycle, representing the new cocycle class,
+ * to the matrix representing the cohomology groups.
+ * The new cocycle has value 0 on every simplex except on sigma
+ * where it worths 1.*/
+void create_cocycle ( Simplex_handle sigma
+ , Arith_element x
+ , Arith_element charac )
+{
+ Simplex_key key = cpx_->key(sigma);
+ // Create a column containing only one cell,
+ Column * new_col = column_pool_->construct(Column(key));
+ Cell * new_cell = cell_pool_->construct(Cell (key, x, new_col));
+ new_col->col_.push_back(*new_cell);
+ // and insert it in the matrix, in constant time thanks to the hint cam_.end().
+ // Indeed *new_col has the biggest lexicographic value because key is the
+ // biggest key used so far.
+ cam_.insert (cam_.end(), *new_col);
+ // Update the disjoint sets data structure.
+ Hcell * new_hcell = new Hcell;
+ new_hcell->push_back(*new_cell);
+ transverse_idx_[key] = cocycle(charac,new_hcell); //insert the new row
+ ds_repr_[key] = new_col;
+}
+
+/* \brief Destroy a cocycle class.
+ *
+ * The cocycle class is destroyed by the insertion of sigma.
+ * The methods proceeds to a reduction of the matrix representing
+ * the cohomology groups using Gauss pivoting. The reduction zeros-out
+ * the row containing the cell with highest key in
+ * a_ds, the annotation of the boundary of simplex sigma. This key
+ * is "death_key".*/
+void destroy_cocycle ( Simplex_handle sigma
+ , A_ds_type const& a_ds
+ , Simplex_key death_key
+ , Arith_element inv_x
+ , Arith_element charac )
+{
+ // Create a finite persistent interval
+ if(interval_length_policy(cpx_->simplex(death_key),sigma)) {
+ persistent_pairs_.push_back ( Persistent_interval ( cpx_->simplex(death_key) //creator
+ , sigma //destructor
+ , charac ) //fields
+ ); // for which the interval exists
+ }
+
+ auto death_key_row = transverse_idx_.find(death_key); // Find the beginning of the row.
+ std::pair< typename Cam::iterator, bool > result_insert_cam;
+
+ auto row_cell_it = death_key_row->second.row_->begin();
+
+ while( row_cell_it != death_key_row->second.row_->end() ) // Traverse all cells in
+ { // the row at index death_key.
+ Arith_element w = coeff_field_.times_minus( inv_x , row_cell_it->coefficient_ );
+
+ if( w != coeff_field_.additive_identity() )
+ {
+ Column * curr_col = row_cell_it->self_col_; ++row_cell_it;
+ // Disconnect the column from the rows in the CAM.
+ for( auto col_cell_it = curr_col->col_.begin();
+ col_cell_it != curr_col->col_.end(); ++col_cell_it )
+ { col_cell_it->base_hook_cam_h::unlink(); }
+
+ // Remove the column from the CAM before modifying its value
+ cam_.erase( cam_.iterator_to(*curr_col) );
+ // Proceed to the reduction of the column
+ plus_equal_column(*curr_col, a_ds, w);
+
+ if( curr_col->col_.empty() ) // If the column is null
+ {
+ ds_repr_[ curr_col->class_key_ ] = NULL;
+ column_pool_->free(curr_col); //delete curr_col;
+ }
+ else
+ {
+ // Find whether the column obtained is already in the CAM
+ result_insert_cam = cam_.insert( *curr_col );
+ if ( result_insert_cam.second ) // If it was not in the CAM before: insertion has succeeded
+ {
+ for ( auto col_cell_it = curr_col->col_.begin();
+ col_cell_it != curr_col->col_.end(); ++col_cell_it ) //re-establish the row links
+ { transverse_idx_[ col_cell_it->key_ ].row_->push_front(*col_cell_it); }
+ }
+ else // There is already an identical column in the CAM:
+ { // merge two disjoint sets.
+ dsets_.link ( curr_col->class_key_ ,
+ result_insert_cam.first->class_key_ );
+
+ Simplex_key key_tmp = dsets_.find_set( curr_col->class_key_ );
+ ds_repr_[ key_tmp ] = &(*(result_insert_cam.first));
+ result_insert_cam.first->class_key_ = key_tmp;
+ column_pool_->free(curr_col); //delete curr_col;
+ }
+ }
+ }
+ else { ++row_cell_it; } // If w == 0, pass.
+ }
+
+ // Because it is a killer simplex, set the data of sigma to null_key().
+ if(charac == coeff_field_.characteristic()) { cpx_->assign_key( sigma, cpx_->null_key() ); }
+ if(death_key_row->second.characteristics_ == charac)
+ {
+ delete death_key_row->second.row_;
+ transverse_idx_.erase(death_key_row);
+ }
+ else { death_key_row->second.characteristics_ /= charac; }
+}
+
+/*
+ * Assign: target <- target + w * other.
+ */
+void plus_equal_column ( Column & target
+ , A_ds_type const& other //value_type is pair<Simplex_key,Arith_element>
+ , Arith_element w )
+{
+ auto target_it = target.col_.begin(); auto other_it = other.begin();
+ while ( target_it != target.col_.end() && other_it != other.end() )
+ {
+ if(target_it->key_ < other_it->first) { ++target_it; }
+ else {
+ if(target_it->key_ > other_it->first)
+ {
+ Cell * cell_tmp = cell_pool_->construct(Cell( other_it->first //key
+ , coeff_field_.additive_identity()
+ , &target));
+
+ coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
+
+ target.col_.insert( target_it, *cell_tmp );
+
+ ++other_it;
+ }
+ else { //it1->key == it2->key
+ //target_it->coefficient_ <- target_it->coefficient_ + other_it->second * w
+ coeff_field_.plus_times_equal( target_it->coefficient_ , other_it->second , w);
+ if( target_it->coefficient_ == coeff_field_.additive_identity() )
+ {
+ auto tmp_it = target_it;
+ ++target_it; ++other_it; // iterators remain valid
+ Cell * tmp_cell_ptr = &(*tmp_it);
+ target.col_.erase(tmp_it); // removed from column
+
+ coeff_field_.clear_coefficient(tmp_cell_ptr->coefficient_);
+ cell_pool_->free(tmp_cell_ptr); // delete from memory
+ }
+ else { ++target_it; ++other_it; }
+ }
+ }
+ }
+ while(other_it != other.end())
+ {
+ Cell * cell_tmp = cell_pool_->construct(Cell( other_it->first //key
+ , coeff_field_.additive_identity()
+ , &target));
+
+ coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
+
+ target.col_.insert( target.col_.end(), *cell_tmp );
+
+ ++other_it;
+ }
+}
+
+/*
+ * Compare two intervals by length.
+ */
+struct cmp_intervals_by_length {
+ cmp_intervals_by_length( Complex_ds * sc ) : sc_ (sc) {}
+ bool operator() ( Persistent_interval & p1
+ , Persistent_interval & p2 )
+ {
+ return ( sc_->filtration( get<1>(p1) ) - sc_->filtration( get<0>(p1) )
+ > sc_->filtration( get<1>(p2) ) - sc_->filtration( get<0>(p2) ) );
+ }
+ Complex_ds * sc_;
+};
+
+public:
+/** \brief Output the persistence diagram in ostream.
+ *
+ * The file format is the following:
+ * p1*...*pr dim b d
+ *
+ * where "dim" is the dimension of the homological feature,
+ * b and d are respectively the birth and death of the feature and
+ * p1*...*pr is the product of prime numbers pi such that the homology
+ * feature exists in homology with Z/piZ coefficients.
+ */
+void output_diagram(std::ostream& ostream = std::cout)
+{
+ cmp_intervals_by_length cmp( cpx_ );
+ persistent_pairs_.sort( cmp );
+ for(auto pair : persistent_pairs_)
+ {
+ ostream << get<2>(pair) << " "
+ << cpx_->dimension(get<0>(pair)) << " "
+ << cpx_->filtration(get<0>(pair)) << " "
+ << cpx_->filtration(get<1>(pair)) << " "
+ << std::endl;
+ }
+}
+
+private:
+/*
+ * Structure representing a cocycle.
+ */
+struct cocycle {
+ cocycle() {}
+ cocycle( Arith_element characteristics
+ , Hcell * row )
+ : row_(row), characteristics_(characteristics) {}
+
+ Hcell * row_; //points to the corresponding row in the CAM
+ Arith_element characteristics_; //product of field characteristics for which the cocycle exist
+};
+
+public:
+ Complex_ds * cpx_;
+ int dim_max_;
+ CoefficientField coeff_field_;
+
+/* Disjoint sets data structure to link the model of FilteredComplex
+ * with the compressed annotation matrix.
+ * ds_rank_ is a property map Simplex_key -> int, ds_parent_ is a property map
+ * Simplex_key -> simplex_key_t */
+ std::vector< int > ds_rank_;
+ std::vector< Simplex_key > ds_parent_;
+ std::vector< Column * > ds_repr_;
+ boost::disjoint_sets< int *, Simplex_key * > dsets_;
+/* The compressed annotation matrix fields.*/
+ Cam cam_;
+/* Dictionary establishing the correspondance between the Simplex_key of
+ * the root vertex in the union-find ds and the Simplex_key of the vertex which
+ * created the connected component as a 0-dimension homology feature.*/
+ std::map<Simplex_key,Simplex_key> zero_cocycles_;
+/* Key -> row. */
+ std::map< Simplex_key , cocycle > transverse_idx_;
+/* Persistent intervals. */
+ std::list< Persistent_interval > persistent_pairs_;
+ length_interval interval_length_policy;
+
+ boost::object_pool< Column > * column_pool_;
+ boost::object_pool< Cell > * cell_pool_;
+};
+
+/** @} */ //end defgroup persistent_cohomology
+
+} // namespace GUDHI
+
+#endif // _PERSISTENCECOMPUTATION_SIMPLEXTREE_