summaryrefslogtreecommitdiff
path: root/src/Rips_complex/include/gudhi/Sparse_rips_complex.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Rips_complex/include/gudhi/Sparse_rips_complex.h')
-rw-r--r--src/Rips_complex/include/gudhi/Sparse_rips_complex.h204
1 files changed, 204 insertions, 0 deletions
diff --git a/src/Rips_complex/include/gudhi/Sparse_rips_complex.h b/src/Rips_complex/include/gudhi/Sparse_rips_complex.h
new file mode 100644
index 00000000..1b250818
--- /dev/null
+++ b/src/Rips_complex/include/gudhi/Sparse_rips_complex.h
@@ -0,0 +1,204 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): Marc Glisse
+ *
+ * Copyright (C) 2018 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+#ifndef SPARSE_RIPS_COMPLEX_H_
+#define SPARSE_RIPS_COMPLEX_H_
+
+#include <gudhi/Debug_utils.h>
+#include <gudhi/graph_simplicial_complex.h>
+#include <gudhi/choose_n_farthest_points.h>
+
+#include <boost/graph/adjacency_list.hpp>
+#include <boost/range/metafunctions.hpp>
+
+#include <vector>
+
+namespace Gudhi {
+
+namespace rips_complex {
+
+// The whole interface is copied on Rips_complex. A redesign should be discussed with all complex creation classes in
+// mind.
+
+/**
+ * \class Sparse_rips_complex
+ * \brief Sparse Rips complex data structure.
+ *
+ * \ingroup rips_complex
+ *
+ * \details
+ * This class is used to construct a sparse \f$(1+O(\epsilon))\f$-approximation of `Rips_complex`, i.e. a filtered
+ * simplicial complex that is multiplicatively
+ * \f$(1+O(\epsilon))\f$-interleaved with the Rips filtration. More precisely,
+ * this is a \f$(1,\frac{1}{1-\epsilon}\f$-interleaving.
+ *
+ * \tparam Filtration_value is the type used to store the filtration values of the simplicial complex.
+ */
+template <typename Filtration_value>
+class Sparse_rips_complex {
+ private:
+ // TODO(MG): use a different graph where we know we can safely insert in parallel.
+ typedef typename boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS,
+ boost::property<vertex_filtration_t, Filtration_value>,
+ boost::property<edge_filtration_t, Filtration_value>>
+ Graph;
+
+ typedef int Vertex_handle;
+
+ public:
+ /** \brief Sparse_rips_complex constructor from a list of points.
+ *
+ * @param[in] points Range of points.
+ * @param[in] distance Distance function that returns a `Filtration_value` from 2 given points.
+ * @param[in] epsilon Approximation parameter. epsilon must be positive.
+ * @param[in] mini Minimal filtration value. Ignore anything below this scale. This is a less efficient version of `Gudhi::subsampling::sparsify_point_set()`.
+ * @param[in] maxi Maximal filtration value. Ignore anything above this scale.
+ *
+ */
+ template <typename RandomAccessPointRange, typename Distance>
+ Sparse_rips_complex(const RandomAccessPointRange& points, Distance distance, double epsilon, Filtration_value mini=-std::numeric_limits<Filtration_value>::infinity(), Filtration_value maxi=std::numeric_limits<Filtration_value>::infinity())
+ : epsilon_(epsilon) {
+ GUDHI_CHECK(epsilon > 0, "epsilon must be positive");
+ auto dist_fun = [&](Vertex_handle i, Vertex_handle j) { return distance(points[i], points[j]); };
+ Ker<decltype(dist_fun)> kernel(dist_fun);
+ subsampling::choose_n_farthest_points(kernel, boost::irange<Vertex_handle>(0, boost::size(points)), -1, -1,
+ std::back_inserter(sorted_points), std::back_inserter(params));
+ compute_sparse_graph(dist_fun, epsilon, mini, maxi);
+ }
+
+ /** \brief Sparse_rips_complex constructor from a distance matrix.
+ *
+ * @param[in] distance_matrix Range of range of distances.
+ * `distance_matrix[i][j]` returns the distance between points \f$i\f$ and
+ * \f$j\f$ as long as \f$ 0 \leqslant j < i \leqslant
+ * distance\_matrix.size().\f$
+ * @param[in] epsilon Approximation parameter. epsilon must be positive.
+ * @param[in] mini Minimal filtration value. Ignore anything below this scale. This is a less efficient version of `Gudhi::subsampling::sparsify_point_set()`.
+ * @param[in] maxi Maximal filtration value. Ignore anything above this scale.
+ */
+ template <typename DistanceMatrix>
+ Sparse_rips_complex(const DistanceMatrix& distance_matrix, double epsilon, Filtration_value mini=-std::numeric_limits<Filtration_value>::infinity(), Filtration_value maxi=std::numeric_limits<Filtration_value>::infinity())
+ : Sparse_rips_complex(boost::irange<Vertex_handle>(0, boost::size(distance_matrix)),
+ [&](Vertex_handle i, Vertex_handle j) { return (i==j) ? 0 : (i<j) ? distance_matrix[j][i] : distance_matrix[i][j]; },
+ epsilon, mini, maxi) {}
+
+ /** \brief Fills the simplicial complex with the sparse Rips graph and
+ * expands it with all the cliques, stopping at a given maximal dimension.
+ *
+ * \tparam SimplicialComplexForRips must meet `SimplicialComplexForRips` concept.
+ *
+ * @param[in] complex the complex to fill
+ * @param[in] dim_max maximal dimension of the simplicial complex.
+ * @exception std::invalid_argument In debug mode, if `complex.num_vertices()` does not return 0.
+ *
+ */
+ template <typename SimplicialComplexForRips>
+ void create_complex(SimplicialComplexForRips& complex, int dim_max) {
+ GUDHI_CHECK(complex.num_vertices() == 0,
+ std::invalid_argument("Sparse_rips_complex::create_complex - simplicial complex is not empty"));
+
+ complex.insert_graph(graph_);
+ if(epsilon_ >= 1) {
+ complex.expansion(dim_max);
+ return;
+ }
+ const int n = boost::size(params);
+ std::vector<Filtration_value> lambda(n);
+ // lambda[original_order]=params[sorted_order]
+ for(int i=0;i<n;++i)
+ lambda[sorted_points[i]] = params[i];
+ double cst = epsilon_ * (1 - epsilon_) / 2;
+ auto block = [cst,&complex,&lambda](typename SimplicialComplexForRips::Simplex_handle sh){
+ auto filt = complex.filtration(sh);
+ auto mini = filt * cst;
+ for(auto v : complex.simplex_vertex_range(sh)){
+ if(lambda[v] < mini)
+ return true; // v died before this simplex could be born
+ }
+ return false;
+ };
+ complex.expansion_with_blockers(dim_max, block);
+ }
+
+ private:
+ // choose_n_farthest_points wants the distance function in this form...
+ template <class Distance>
+ struct Ker {
+ typedef std::size_t Point_d; // index into point range
+ Ker(Distance& d) : dist(d) {}
+ // Despite the name, this is not squared...
+ typedef Distance Squared_distance_d;
+ Squared_distance_d& squared_distance_d_object() const { return dist; }
+ Distance& dist;
+ };
+
+ // PointRange must be random access.
+ template <typename Distance>
+ void compute_sparse_graph(Distance& dist, double epsilon, Filtration_value mini, Filtration_value maxi) {
+ const auto& points = sorted_points; // convenience alias
+ const int n = boost::size(points);
+ double cst = epsilon * (1 - epsilon) / 2;
+ graph_.~Graph();
+ new (&graph_) Graph(n);
+ // for(auto v : vertices(g)) // doesn't work :-(
+ typename boost::graph_traits<Graph>::vertex_iterator v_i, v_e;
+ for (std::tie(v_i, v_e) = vertices(graph_); v_i != v_e; ++v_i) {
+ auto v = *v_i;
+ // This whole loop might not be necessary, leave it until someone investigates if it is safe to remove.
+ put(vertex_filtration_t(), graph_, v, 0);
+ }
+
+ // TODO(MG):
+ // - make it parallel
+ // - only test near-enough neighbors
+ for (int i = 0; i < n; ++i) {
+ auto&& pi = points[i];
+ auto li = params[i];
+ if (li < mini) break;
+ for (int j = i + 1; j < n; ++j) {
+ auto&& pj = points[j];
+ auto d = dist(pi, pj);
+ auto lj = params[j];
+ if (lj < mini) break;
+ GUDHI_CHECK(lj <= li, "Bad furthest point sorting");
+ Filtration_value alpha;
+
+ // The paper has d/2 and d-lj/e to match the Cech, but we use doubles to match the Rips
+ if (d * epsilon <= 2 * lj)
+ alpha = d;
+ else if (d * epsilon > li + lj)
+ continue;
+ else {
+ alpha = (d - lj / epsilon) * 2;
+ // Keep the test exactly the same as in block to avoid inconsistencies
+ if (epsilon < 1 && alpha * cst > lj)
+ continue;
+ }
+
+ if (alpha <= maxi)
+ add_edge(pi, pj, alpha, graph_);
+ }
+ }
+ }
+
+ Graph graph_;
+ double epsilon_;
+ // Because of the arbitrary split between constructor and create_complex
+ // sorted_points[sorted_order]=original_order
+ std::vector<Vertex_handle> sorted_points;
+ // params[sorted_order]=distance to previous points
+ std::vector<Filtration_value> params;
+};
+
+} // namespace rips_complex
+
+} // namespace Gudhi
+
+#endif // SPARSE_RIPS_COMPLEX_H_