summaryrefslogtreecommitdiff
path: root/src/Rips_complex/test/test_rips_complex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/Rips_complex/test/test_rips_complex.cpp')
-rw-r--r--src/Rips_complex/test/test_rips_complex.cpp231
1 files changed, 231 insertions, 0 deletions
diff --git a/src/Rips_complex/test/test_rips_complex.cpp b/src/Rips_complex/test/test_rips_complex.cpp
new file mode 100644
index 00000000..5f129160
--- /dev/null
+++ b/src/Rips_complex/test/test_rips_complex.cpp
@@ -0,0 +1,231 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2016 INRIA Saclay (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#define BOOST_TEST_DYN_LINK
+#define BOOST_TEST_MODULE "rips_complex"
+#include <boost/test/unit_test.hpp>
+
+#include <cmath> // float comparison
+#include <limits>
+#include <string>
+#include <vector>
+#include <algorithm> // std::max
+
+#include <gudhi/Rips_complex.h>
+// to construct Rips_complex from a OFF file of points
+#include <gudhi/Points_off_io.h>
+// to construct a simplex_tree from rips complex
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/distance_functions.h>
+
+// Type definitions
+using Point = std::vector<double>;
+using Simplex_tree = Gudhi::Simplex_tree<>;
+using Rips_complex = Gudhi::rips_complex::Rips_complex<Simplex_tree::Filtration_value>;
+
+bool are_almost_the_same(float a, float b) {
+ return std::fabs(a - b) < std::numeric_limits<float>::epsilon();
+}
+
+BOOST_AUTO_TEST_CASE(RIPS_DOC_OFF_file) {
+ // ----------------------------------------------------------------------------
+ //
+ // Init of a rips complex from a OFF file
+ //
+ // ----------------------------------------------------------------------------
+ std::string off_file_name("alphacomplexdoc.off");
+ double rips_threshold = 12.0;
+ std::cout << "========== OFF FILE NAME = " << off_file_name << " - rips threshold=" <<
+ rips_threshold << "==========" << std::endl;
+
+ Gudhi::Points_off_reader<Point> off_reader(off_file_name);
+ Rips_complex rips_complex_from_file(off_reader.get_point_cloud(), rips_threshold, euclidean_distance<Point>);
+
+ const int DIMENSION_1 = 1;
+ Simplex_tree st;
+ BOOST_CHECK(rips_complex_from_file.create_complex(st, DIMENSION_1));
+ std::cout << "st.dimension()=" << st.dimension() << std::endl;
+ BOOST_CHECK(st.dimension() == DIMENSION_1);
+
+ const int NUMBER_OF_VERTICES = 7;
+ std::cout << "st.num_vertices()=" << st.num_vertices() << std::endl;
+ BOOST_CHECK(st.num_vertices() == NUMBER_OF_VERTICES);
+
+ std::cout << "st.num_simplices()=" << st.num_simplices() << std::endl;
+ BOOST_CHECK(st.num_simplices() == 18);
+
+ // Check filtration values of vertices is 0.0
+ for (auto f_simplex : st.skeleton_simplex_range(0)) {
+ BOOST_CHECK(st.filtration(f_simplex) == 0.0);
+ }
+
+ // Check filtration values of edges
+ for (auto f_simplex : st.skeleton_simplex_range(DIMENSION_1)) {
+ if (DIMENSION_1 == st.dimension(f_simplex)) {
+ std::vector<Point> vp;
+ std::cout << "vertex = (";
+ for (auto vertex : st.simplex_vertex_range(f_simplex)) {
+ std::cout << vertex << ",";
+ vp.push_back(off_reader.get_point_cloud().at(vertex));
+ }
+ std::cout << ") - distance =" << euclidean_distance(vp.at(0), vp.at(1)) <<
+ " - filtration =" << st.filtration(f_simplex) << std::endl;
+ BOOST_CHECK(vp.size() == 2);
+ BOOST_CHECK(are_almost_the_same(st.filtration(f_simplex), euclidean_distance(vp.at(0), vp.at(1))));
+ }
+ }
+
+ const int DIMENSION_2 = 2;
+ Simplex_tree st2;
+ BOOST_CHECK(rips_complex_from_file.create_complex(st2, DIMENSION_2));
+ std::cout << "st2.dimension()=" << st2.dimension() << std::endl;
+ BOOST_CHECK(st2.dimension() == DIMENSION_2);
+
+ std::cout << "st2.num_vertices()=" << st2.num_vertices() << std::endl;
+ BOOST_CHECK(st2.num_vertices() == NUMBER_OF_VERTICES);
+
+ std::cout << "st2.num_simplices()=" << st2.num_simplices() << std::endl;
+ BOOST_CHECK(st2.num_simplices() == 23);
+
+ Simplex_tree::Filtration_value f01 = st2.filtration(st2.find({0, 1}));
+ Simplex_tree::Filtration_value f02 = st2.filtration(st2.find({0, 2}));
+ Simplex_tree::Filtration_value f12 = st2.filtration(st2.find({1, 2}));
+ Simplex_tree::Filtration_value f012 = st2.filtration(st2.find({0, 1, 2}));
+ std::cout << "f012= " << f012 << " | f01= " << f01 << " - f02= " << f02 << " - f12= " << f12 << std::endl;
+ BOOST_CHECK(are_almost_the_same(f012, std::max(f01, std::max(f02,f12))));
+
+ Simplex_tree::Filtration_value f45 = st2.filtration(st2.find({4, 5}));
+ Simplex_tree::Filtration_value f56 = st2.filtration(st2.find({5, 6}));
+ Simplex_tree::Filtration_value f46 = st2.filtration(st2.find({4, 6}));
+ Simplex_tree::Filtration_value f456 = st2.filtration(st2.find({4, 5, 6}));
+ std::cout << "f456= " << f456 << " | f45= " << f45 << " - f56= " << f56 << " - f46= " << f46 << std::endl;
+ BOOST_CHECK(are_almost_the_same(f456, std::max(f45, std::max(f56,f46))));
+
+ const int DIMENSION_3 = 3;
+ Simplex_tree st3;
+ BOOST_CHECK(rips_complex_from_file.create_complex(st3, DIMENSION_3));
+ std::cout << "st3.dimension()=" << st3.dimension() << std::endl;
+ BOOST_CHECK(st3.dimension() == DIMENSION_3);
+
+ std::cout << "st3.num_vertices()=" << st3.num_vertices() << std::endl;
+ BOOST_CHECK(st3.num_vertices() == NUMBER_OF_VERTICES);
+
+ std::cout << "st3.num_simplices()=" << st3.num_simplices() << std::endl;
+ BOOST_CHECK(st3.num_simplices() == 24);
+
+ Simplex_tree::Filtration_value f123 = st3.filtration(st3.find({1, 2, 3}));
+ Simplex_tree::Filtration_value f013 = st3.filtration(st3.find({0, 1, 3}));
+ Simplex_tree::Filtration_value f023 = st3.filtration(st3.find({0, 2, 3}));
+ Simplex_tree::Filtration_value f0123 = st3.filtration(st3.find({0, 1, 2, 3}));
+ std::cout << "f0123= " << f0123 << " | f012= " << f012 << " - f123= " << f123 << " - f013= " << f013 <<
+ " - f023= " << f023 << std::endl;
+ BOOST_CHECK(are_almost_the_same(f0123, std::max(f012, std::max(f123, std::max(f013, f023)))));
+
+}
+
+using Vector_of_points = std::vector<Point>;
+
+bool is_point_in_list(Vector_of_points points_list, Point point) {
+ for (auto& point_in_list : points_list) {
+ if (point_in_list == point) {
+ return true; // point found
+ }
+ }
+ return false; // point not found
+}
+
+/* Compute the square value of Euclidean distance between two Points given by a range of coordinates.
+ * The points are assumed to have the same dimension. */
+template< typename Point >
+double custom_square_euclidean_distance(const Point &p1,const Point &p2) {
+ double dist = 0.;
+ auto it1 = p1.begin();
+ auto it2 = p2.begin();
+ for (; it1 != p1.end(); ++it1, ++it2) {
+ double tmp = *it1 - *it2;
+ dist += tmp*tmp;
+ }
+ return dist;
+}
+
+BOOST_AUTO_TEST_CASE(Rips_complex_from_points) {
+ // ----------------------------------------------------------------------------
+ // Init of a list of points
+ // ----------------------------------------------------------------------------
+ Vector_of_points points;
+ std::vector<double> coords = { 0.0, 0.0, 0.0, 1.0 };
+ points.push_back(Point(coords.begin(), coords.end()));
+ coords = { 0.0, 0.0, 1.0, 0.0 };
+ points.push_back(Point(coords.begin(), coords.end()));
+ coords = { 0.0, 1.0, 0.0, 0.0 };
+ points.push_back(Point(coords.begin(), coords.end()));
+ coords = { 1.0, 0.0, 0.0, 0.0 };
+ points.push_back(Point(coords.begin(), coords.end()));
+
+ // ----------------------------------------------------------------------------
+ // Init of a rips complex from the list of points
+ // ----------------------------------------------------------------------------
+ Rips_complex rips_complex_from_points(points, 2.0, custom_square_euclidean_distance<Point>);
+
+ std::cout << "========== Rips_complex_from_points ==========" << std::endl;
+ Simplex_tree st;
+ const int DIMENSION = 3;
+ BOOST_CHECK(rips_complex_from_points.create_complex(st, DIMENSION));
+
+ // Another way to check num_simplices
+ std::cout << "Iterator on rips complex simplices in the filtration order, with [filtration value]:" << std::endl;
+ int num_simplices = 0;
+ for (auto f_simplex : st.filtration_simplex_range()) {
+ num_simplices++;
+ std::cout << " ( ";
+ for (auto vertex : st.simplex_vertex_range(f_simplex)) {
+ std::cout << vertex << " ";
+ }
+ std::cout << ") -> " << "[" << st.filtration(f_simplex) << "] ";
+ std::cout << std::endl;
+ }
+ BOOST_CHECK(num_simplices == 15);
+ std::cout << "st.num_simplices()=" << st.num_simplices() << std::endl;
+ BOOST_CHECK(st.num_simplices() == 15);
+
+ std::cout << "st.dimension()=" << st.dimension() << std::endl;
+ BOOST_CHECK(st.dimension() == DIMENSION);
+ std::cout << "st.num_vertices()=" << st.num_vertices() << std::endl;
+ BOOST_CHECK(st.num_vertices() == 4);
+
+ for (auto f_simplex : st.filtration_simplex_range()) {
+ std::cout << "dimension(" << st.dimension(f_simplex) << ") - f = " << st.filtration(f_simplex) << std::endl;
+ switch (st.dimension(f_simplex)) {
+ case 0:
+ BOOST_CHECK(are_almost_the_same(st.filtration(f_simplex), 0.0));
+ break;
+ case 1:
+ case 2:
+ case 3:
+ BOOST_CHECK(are_almost_the_same(st.filtration(f_simplex), 2.0));
+ break;
+ default:
+ BOOST_CHECK(false); // Shall not happen
+ break;
+ }
+ }
+}