summaryrefslogtreecommitdiff
path: root/src/Simplex_tree/include/gudhi/Simplex_tree.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Simplex_tree/include/gudhi/Simplex_tree.h')
-rw-r--r--src/Simplex_tree/include/gudhi/Simplex_tree.h810
1 files changed, 810 insertions, 0 deletions
diff --git a/src/Simplex_tree/include/gudhi/Simplex_tree.h b/src/Simplex_tree/include/gudhi/Simplex_tree.h
new file mode 100644
index 00000000..5caa5e25
--- /dev/null
+++ b/src/Simplex_tree/include/gudhi/Simplex_tree.h
@@ -0,0 +1,810 @@
+ /* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Clément Maria
+ *
+ * Copyright (C) 2014 INRIA Sophia Antipolis-Méditerranée (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef GUDHI_SIMPLEX_TREE_H
+#define GUDHI_SIMPLEX_TREE_H
+
+#include <algorithm>
+#include <boost/container/flat_map.hpp>
+#include <boost/iterator/transform_iterator.hpp>
+#include <boost/graph/adjacency_list.hpp>
+#include "gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h"
+#include "gudhi/Simplex_tree/Simplex_tree_siblings.h"
+#include "gudhi/Simplex_tree/Simplex_tree_iterators.h"
+#include "gudhi/Simplex_tree/indexing_tag.h"
+
+namespace Gudhi{
+
+/** \defgroup simplex_tree Filtered Complexes Package
+ *
+ * A simplicial complex \f$\mathbf{K}\f$
+ * on a set of vertices \f$V = \{1, \cdots ,|V|\}\f$ is a collection of simplices
+ * \f$\{\sigma\}\f$,
+ * \f$\sigma \subseteq V\f$ such that \f$\tau \subseteq \sigma \in \mathbf{K} \rightarrow \tau \in
+ * \mathbf{K}\f$. The
+ * dimension \f$n=|\sigma|-1\f$ of \f$\sigma\f$ is its number of elements minus \f$1\f$.
+ *
+ * A filtration of a simplicial complex is
+ * a function \f$f:\mathbf{K} \rightarrow \mathbb{R}\f$ satisfying \f$f(\tau)\leq f(\sigma)\f$ whenever
+ * \f$\tau \subseteq \sigma\f$. Ordering the simplices by increasing filtration values
+ * (breaking ties so as a simplex appears after its subsimplices of same filtration value)
+ * provides an indexing scheme.
+ *
+
+ <DT>Implementations:</DT>
+ There are two implementation of complexes. The first on is the Simplex_tree data structure.
+ The simplex tree is an efficient and flexible
+ data structure for representing general (filtered) simplicial complexes. The data structure
+ is described in \cite boissonnatmariasimplextreealgorithmica
+
+ The second one is the Hasse_complex. The Hasse complex is a data structure representing
+ explicitly all co-dimension 1 incidence relations in a complex. It is consequently faster
+ when accessing the boundary of a simplex, but is less compact and harder to construct from
+ scratch.
+
+
+ * \author Clément Maria
+ * \version 1.0
+ * \date 2014
+ * \copyright GNU General Public License v3.
+ * @{
+ */
+/**
+ * \brief Simplex Tree data structure for representing simplicial complexes.
+ *
+ * \details Every simplex \f$[v_0, \cdots ,v_d]\f$ admits a canonical orientation
+ * induced by the order relation on vertices \f$ v_0 < \cdots < v_d \f$.
+ *
+ * Details may be found in \cite boissonnatmariasimplextreealgorithmica.
+ *
+ * \implements FilteredComplex
+ *
+ */
+template < typename IndexingTag = linear_indexing_tag
+ , typename FiltrationValue = double
+ , typename SimplexKey = int //must be a signed integer type
+ , typename VertexHandle = int //must be a signed integer type, int convertible to it
+// , bool ContiguousVertexHandles = true //true is Vertex_handles are exactly the set [0;n)
+ >
+class Simplex_tree
+{
+
+public:
+ typedef IndexingTag Indexing_tag;
+/** \brief Type for the value of the filtration function.
+ *
+ * Must be comparable with <. */
+ typedef FiltrationValue Filtration_value;
+/** \brief Key associated to each simplex.
+ *
+ * Must be a signed integer type. */
+ typedef SimplexKey Simplex_key;
+/** \brief Type for the vertex handle.
+ *
+ * Must be a signed integer type. It admits a total order <. */
+ typedef VertexHandle Vertex_handle;
+
+
+ /* Type of node in the simplex tree. */
+ typedef Simplex_tree_node_explicit_storage < Simplex_tree > Node;
+ /* Type of dictionary Vertex_handle -> Node for traversing the simplex tree. */
+ typedef typename boost::container::flat_map< Vertex_handle
+ , Node > Dictionary;
+
+
+ friend class Simplex_tree_node_explicit_storage < Simplex_tree < FiltrationValue
+ , SimplexKey
+ , VertexHandle > >;
+ friend class Simplex_tree_siblings < Simplex_tree < FiltrationValue
+ , SimplexKey
+ , VertexHandle >
+ , Dictionary > ;
+ friend class Simplex_tree_simplex_vertex_iterator < Simplex_tree < FiltrationValue
+ , SimplexKey
+ , VertexHandle > >;
+ friend class Simplex_tree_boundary_simplex_iterator < Simplex_tree < FiltrationValue
+ , SimplexKey
+ , VertexHandle > >;
+ friend class Simplex_tree_complex_simplex_iterator < Simplex_tree < FiltrationValue
+ , SimplexKey
+ , VertexHandle > >;
+ friend class Simplex_tree_skeleton_simplex_iterator < Simplex_tree < FiltrationValue
+ , SimplexKey
+ , VertexHandle > >;
+ template < class T1, class T2 > friend class Persistent_cohomology;
+
+ /* \brief Set of nodes sharing a same parent in the simplex tree. */
+ typedef Simplex_tree_siblings < Simplex_tree
+ , Dictionary > Siblings;
+public:
+/** \brief Handle type to a simplex contained in the simplicial complex represented
+ * byt he simplex tree. */
+ typedef typename Dictionary::iterator Simplex_handle;
+private:
+ typedef typename Dictionary::iterator Dictionary_it;
+ typedef typename Dictionary_it::value_type Dit_value_t;
+
+ struct return_first {
+ Vertex_handle operator()(const Dit_value_t& p_sh) const {return p_sh.first;}
+ };
+public:
+/** \name Range and iterator types
+ *
+ * The naming convention is Container_content_(iterator/range). A Container_content_range is
+ * essentially an object on which the methods begin() and end() can be called. They both return
+ * an object of type Container_content_iterator, and allow the traversal of the range
+ * [ begin();end() ).
+ * @{ */
+
+ /** \brief Iterator over the vertices of the simplicial complex.
+ *
+ * 'value_type' is Vertex_handle. */
+ typedef boost::transform_iterator < return_first, Dictionary_it > Complex_vertex_iterator ;
+ /** \brief Range over the vertices of the simplicial complex. */
+ typedef boost::iterator_range < Complex_vertex_iterator > Complex_vertex_range ;
+ /** \brief Iterator over the vertices of a simplex.
+ *
+ * 'value_type' is Vertex_handle. */
+ typedef Simplex_tree_simplex_vertex_iterator < Simplex_tree > Simplex_vertex_iterator ;
+ /** \brief Range over the vertices of a simplex. */
+ typedef boost::iterator_range < Simplex_vertex_iterator > Simplex_vertex_range ;
+ /** \brief Iterator over the simplices of the boundary of a simplex.
+ *
+ * 'value_type' is Simplex_handle. */
+ typedef Simplex_tree_boundary_simplex_iterator < Simplex_tree > Boundary_simplex_iterator ;
+ /** \brief Range over the simplices of the boundary of a simplex. */
+ typedef boost::iterator_range < Boundary_simplex_iterator > Boundary_simplex_range ;
+ /** \brief Iterator over the simplices of the simplicial complex.
+ *
+ * 'value_type' is Simplex_handle. */
+ typedef Simplex_tree_complex_simplex_iterator < Simplex_tree > Complex_simplex_iterator ;
+ /** \brief Range over the simplices of the simplicial complex. */
+ typedef boost::iterator_range < Complex_simplex_iterator > Complex_simplex_range ;
+ /** \brief Iterator over the simplices of the skeleton of the simplicial complex, for a given
+ * dimension.
+ *
+ * 'value_type' is Simplex_handle. */
+ typedef Simplex_tree_skeleton_simplex_iterator < Simplex_tree > Skeleton_simplex_iterator ;
+ /** \brief Range over the simplices of the skeleton of the simplicial complex, for a given
+ * dimension. */
+ typedef boost::iterator_range < Skeleton_simplex_iterator > Skeleton_simplex_range ;
+ /** \brief Iterator over the simplices of the simplicial complex, ordered by the filtration.
+ *
+ * 'value_type' is Simplex_handle. */
+ typedef typename std::vector < Simplex_handle >::iterator Filtration_simplex_iterator;
+ /** \brief Range over the simplices of the simplicial complex, ordered by the filtration. */
+ typedef boost::iterator_range < Filtration_simplex_iterator > Filtration_simplex_range ;
+
+/* @} */ //end name range and iterator types
+
+
+/** \name Range and iterator methods
+ * @{ */
+
+/** \brief Returns a range over the vertices of the simplicial complex.
+ *
+ * The order is increasing according to < on Vertex_handles.*/
+Complex_vertex_range complex_vertex_range()
+{ return Complex_vertex_range( boost::make_transform_iterator(root_.members_.begin(),return_first())
+ , boost::make_transform_iterator(root_.members_.end(),return_first())); }
+/** \brief Returns a range over the simplices of the simplicial complex.
+ *
+ * In the Simplex_tree, the tree is traverse in a depth-first fashion.
+ * Consequently, simplices are ordered according to lexicographic order on the list of
+ * Vertex_handles of a simplex, read in increasing < order for Vertex_handles. */
+ Complex_simplex_range complex_simplex_range()
+ { return Complex_simplex_range ( Complex_simplex_iterator(this),
+ Complex_simplex_iterator() ); }
+/** \brief Returns a range over the simplices of the dim-skeleton of the simplicial complex.
+ *
+ * The \f$d\f$-skeleton of a simplicial complex \f$\mathbf{K}\f$ is the simplicial complex containing the
+ * simplices of \f$\mathbf{K}\f$ of dimension at most \f$d\f$.
+ *
+ * @param[in] dim The maximal dimension of the simplices in the skeleton.
+ *
+ * The simplices are ordered according to lexicographic order on the list of
+ * Vertex_handles of a simplex, read in increasing < order for Vertex_handles. */
+ Skeleton_simplex_range skeleton_simplex_range(int dim)
+ { return Skeleton_simplex_range ( Skeleton_simplex_iterator(this,dim)
+ , Skeleton_simplex_iterator() ); }
+/** \brief Returns a range over the simplices of the simplicial complex,
+ * in the order of the filtration.
+ *
+ * The filtration is a monotonic function \f$ f: \mathbf{K} \rightarrow \mathbb{R} \f$, i.e. if two simplices
+ * \f$\tau\f$ and \f$\sigma\f$ satisfy \f$\tau \subseteq \sigma\f$ then
+ * \f$f(\tau) \leq f(\sigma)\f$.
+ *
+ * The method returns simplices ordered according to increasing filtration values. Ties are
+ * resolved by considering inclusion relation (subsimplices appear before their cofaces). If two
+ * simplices have same filtration value but are not comparable w.r.t. inclusion, lexicographic
+ * order is used.
+ *
+ * The filtration must be valid. If the filtration has not been initialized yet, the
+ * method initializes it (i.e. order the simplices). */
+ Filtration_simplex_range filtration_simplex_range(linear_indexing_tag)
+ { if(filtration_vect_.empty()) { initialize_filtration(); }
+ return Filtration_simplex_range ( filtration_vect_.begin()
+ , filtration_vect_.end()); }
+
+ Filtration_simplex_range filtration_simplex_range() {
+ return filtration_simplex_range(Indexing_tag());
+ }
+/** \brief Returns a range over the vertices of a simplex.
+ *
+ * The order in which the vertices are visited is the decreasing order for < on Vertex_handles,
+ * which is consequenlty
+ * equal to \f$(-1)^{\text{dim} \sigma}\f$ the canonical orientation on the simplex.
+ */
+ Simplex_vertex_range simplex_vertex_range(Simplex_handle sh)
+ { return Simplex_vertex_range ( Simplex_vertex_iterator(this,sh),
+ Simplex_vertex_iterator(this));}
+
+/** \brief Returns a range over the simplices of the boundary of a simplex.
+ *
+ * The boundary of a simplex is the set of codimension \f$1\f$ subsimplices of the simplex.
+ * If the simplex is \f$[v_0, \cdots ,v_d]\f$, with canonical orientation
+ * induced by \f$ v_0 < \cdots < v_d \f$, the iterator enumerates the
+ * simplices of the boundary in the order:
+ * \f$[v_0,\cdots,\widehat{v_i},\cdots,v_d]\f$ for \f$i\f$ from \f$0\f$ to \f$d\f$,
+ * where \f$\widehat{v_i}\f$ means that the vertex \f$v_i\f$ is omitted.
+ *
+ * We note that the alternate sum of the simplices given by the iterator
+ * gives \f$(-1)^{\text{dim} \sigma}\f$ the chains corresponding to the boundary
+ * of the simplex.
+ *
+ * @param[in] sh Simplex for which the boundary is computed. */
+ Boundary_simplex_range boundary_simplex_range(Simplex_handle sh)
+ { return Boundary_simplex_range ( Boundary_simplex_iterator(this,sh),
+ Boundary_simplex_iterator(this) ); }
+
+/** @} */ //end range and iterator methods
+
+
+/** \name Constructor/Destructor
+ * @{ */
+
+/** \brief Constructs an empty simplex tree. */
+ Simplex_tree ()
+ : null_vertex_(-1)
+ , threshold_(0)
+ , num_simplices_(0)
+ , root_(NULL,null_vertex_)
+ , filtration_vect_()
+ , dimension_(-1) {}
+
+/** \brief Destructor; deallocates the whole tree structure. */
+~Simplex_tree()
+{
+ for(auto sh = root_.members().begin(); sh != root_.members().end(); ++sh)
+ {
+ if(has_children(sh)) { rec_delete(sh->second.children()); }
+ }
+}
+/** @} */ // end constructor/destructor
+private:
+/** Recursive deletion. */
+void rec_delete(Siblings * sib)
+{
+ for(auto sh = sib->members().begin(); sh != sib->members().end(); ++sh)
+ { if(has_children(sh)) { rec_delete(sh->second.children()); } }
+ delete sib;
+}
+
+
+public:
+/** \brief Returns the key associated to a simplex.
+ *
+ * The filtration must be initialized. */
+Simplex_key key ( Simplex_handle sh ) { return sh->second.key(); }
+/** \brief Returns the simplex associated to a key.
+ *
+ * The filtration must be initialized. */
+Simplex_handle simplex ( Simplex_key key ) { return filtration_vect_[key]; }
+/** \brief Returns the filtration value of a simplex.
+ *
+ * Called on the null_simplex, returns INFINITY. */
+Filtration_value filtration(Simplex_handle sh)
+{
+ if(sh != null_simplex()) { return sh->second.filtration(); }
+ else { return INFINITY; }//filtration(); }
+}
+/** \brief Returns an upper bound of the filtration values of the simplices. */
+Filtration_value filtration()
+{ return threshold_; }
+/** \brief Returns a Simplex_handle different from all Simplex_handles
+ * associated to the simplices in the simplicial complex.
+ *
+ * One can call filtration(null_simplex()). */
+Simplex_handle null_simplex() { return Dictionary_it(NULL); }
+/** \brief Returns a key different for all keys associated to the
+ * simplices of the simplicial complex. */
+Simplex_key null_key() { return -1; }
+/** \brief Returns a Vertex_handle different from all Vertex_handles associated
+ * to the vertices of the simplicial complex. */
+Vertex_handle null_vertex() { return null_vertex_; }
+/** \brief Returns the number of vertices in the complex. */
+size_t num_vertices() { return root_.members_.size(); }
+/** \brief Returns the number of simplices in the complex.
+ *
+ * Does not count the empty simplex. */
+size_t num_simplices() { return num_simplices_; }
+
+/** \brief Returns the dimension of a simplex.
+ *
+ * Must be different from null_simplex().*/
+int dimension(Simplex_handle sh)
+{ Siblings * curr_sib = self_siblings(sh);
+ int dim = 0;
+ while(curr_sib != NULL) { ++dim; curr_sib = curr_sib->oncles(); }
+ return dim-1;
+}
+/** \brief Returns an upper bound on the dimension of the simplicial complex. */
+int dimension()
+{ return dimension_; }
+
+/** \brief Returns true iff the node in the simplex tree pointed by
+ * sh has children.*/
+bool has_children(Simplex_handle sh)
+{ return (sh->second.children()->parent() == sh->first); }
+
+/** \brief Given a range of Vertex_handles, returns the Simplex_handle
+ * of the simplex in the simplicial complex containing the corresponding
+ * vertices. Return null_simplex() if the simplex is not in the complex.
+ *
+ * The type RandomAccessVertexRange must be a range for which .begin() and
+ * .end() return random access iterators, with <CODE>value_type</CODE>
+ * <CODE>Vertex_handle</CODE>.
+ */
+template <class RandomAccessVertexRange >
+Simplex_handle find(RandomAccessVertexRange & s)
+{
+ if(s.begin() == s.end()) std::cerr << "Empty simplex \n";
+
+ sort(s.begin(),s.end());
+
+ Siblings * tmp_sib = &root_;
+ Dictionary_it tmp_dit;
+ Vertex_handle last = s[s.size()-1];
+ for(auto v : s) {
+ tmp_dit = tmp_sib->members_.find(v);
+ if(tmp_dit == tmp_sib->members_.end()) { return null_simplex(); }
+ if( !has_children(tmp_dit) && v != last) { return null_simplex(); }
+ tmp_sib = tmp_dit->second.children();
+ }
+ return tmp_dit;
+}
+
+/** \brief Returns the Simplex_handle corresponding to the 0-simplex
+ * representing the vertex with Vertex_handle v. */
+Simplex_handle find_vertex(Vertex_handle v)
+{ return root_.members_.begin()+v; }
+//{ return root_.members_.find(v); }
+
+
+/** \brief Insert a simplex, represented by a range of Vertex_handles, in the simplicial complex.
+ *
+ * @param[in] simplex range of Vertex_handles, representing the vertices of the new simplex
+ * @param[in] filtration the filtration value assigned to the new simplex.
+ * The return type is a pair. If the new simplex is inserted successfully (i.e. it was not in the
+ * simplicial complex yet) the bool is set to true and the Simplex_handle is the handle assigned
+ * to the new simplex.
+ * If the insertion fails (the simplex is already there), the bool is set to false. If the insertion
+ * fails and the simplex already in the complex has a filtration value strictly bigger than 'filtration',
+ * we assign this simplex with the new value 'filtration', and set the Simplex_handle filed of the
+ * output pair to the Simplex_handle of the simplex. Otherwise, we set the Simplex_handle part to
+ * null_simplex.
+ *
+ * All subsimplices do not necessary need to be already in the simplex tree to proceed to an
+ * insertion. However, the property of being a simplicial complex will be violated. This allows
+ * us to insert a stream of simplices contained in a simplicial complex without considering any
+ * order on them.
+ *
+ * The filtration value
+ * assigned to the new simplex must preserve the monotonicity of the filtration.
+ *
+ * The type RandomAccessVertexRange must be a range for which .begin() and
+ * .end() return random access iterators, with 'value_type' Vertex_handle. */
+template <class RandomAccessVertexRange >
+std::pair< Simplex_handle, bool >
+insert ( RandomAccessVertexRange & simplex
+ , Filtration_value filtration )
+{
+ if(simplex.empty()) { return std::pair< Simplex_handle, bool >(null_simplex(),true); }
+
+ sort(simplex.begin(),simplex.end()); //must be sorted in increasing order
+
+ Siblings * curr_sib = &root_;
+ std::pair< Simplex_handle, bool > res_insert;
+ typename RandomAccessVertexRange::iterator vi;
+ for( vi = simplex.begin(); vi != simplex.end()-1; ++vi )
+ {
+ res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib,filtration));
+ if(!(has_children(res_insert.first)))
+ { res_insert.first->second.assign_children( new Siblings(curr_sib, *vi)); }
+ curr_sib = res_insert.first->second.children();
+ }
+ res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib,filtration));
+ if(!res_insert.second) //if already in the complex
+ {
+ if(res_insert.first->second.filtration() > filtration) //if filtration value modified
+ {
+ res_insert.first->second.assign_filtration(filtration);
+ return res_insert;
+ }
+ return std::pair< Simplex_handle, bool > (null_simplex(),false);// if filtration value unchanged
+ }
+ //otherwise the insertion has succeeded
+ return res_insert;
+}
+
+/** \brief Assign a value 'key' to the key of the simplex
+ * represented by the Simplex_handle 'sh'. */
+void assign_key(Simplex_handle sh, Simplex_key key)
+{ sh->second.assign_key(key);}
+
+public:
+/** Returns the two Simplex_handle corresponding to the endpoints of
+ * and edge. sh must point to a 1-dimensional simplex. This is an
+ * optimized version of the boundary computation. */
+std::pair<Simplex_handle,Simplex_handle> endpoints(Simplex_handle sh)
+{ return std::pair<Simplex_handle,Simplex_handle>(root_.members_.find(sh->first)
+ , root_.members_.find(self_siblings(sh)->parent()) ); }
+
+/** Returns the Siblings containing a simplex.*/
+Siblings * self_siblings(Simplex_handle sh)
+{ if(sh->second.children()->parent() == sh->first) return sh->second.children()->oncles();
+ else return sh->second.children(); }
+
+// void display_simplex(Simplex_handle sh)
+// {
+// std::cout << " " << "[" << filtration(sh) << "] ";
+// for( auto vertex : simplex_vertex_range(sh) )
+// { std::cout << vertex << " "; }
+// }
+
+ // void print(Simplex_handle sh, std::ostream& os = std::cout)
+ // { for(auto v : simplex_vertex_range(sh)) {os << v << " ";}
+ // os << std::endl; }
+
+public:
+/** Returns a pointer to the root nodes of the simplex tree. */
+Siblings * root() { return &root_; }
+
+
+
+
+public:
+/** Set an upper bound for the filtration values. */
+void set_filtration(Filtration_value fil)
+{ threshold_ = fil; }
+/** Set a number of simplices for the simplicial complex. */
+void set_num_simplices(size_t num_simplices)
+{ num_simplices_ = num_simplices; }
+/** Set a dimension for the simplicial complex. */
+void set_dimension(int dimension)
+{ dimension_ = dimension; }
+
+public:
+/** \brief Initializes the filtrations, i.e. sort the
+ * simplices according to their order in the filtration and initializes all Simplex_keys.
+ *
+ * After calling this method, filtration_simplex_range() becomes valid, and each simplex is
+ * assigned a Simplex_key corresponding to its order in the filtration (from 0 to m-1 for a
+ * simplicial complex with m simplices).
+ *
+ * The use of a depth-first traversal of the simplex tree, provided by
+ * complex_simplex_range(), combined with
+ * a stable sort is meant to optimize the order of simplices with same
+ * filtration value. The heuristic consists in inserting the cofaces of a
+ * simplex as soon as possible.
+ *
+ * Will be automatically called when calling filtration_simplex_range()
+ * if the filtration has never been initialized yet. */
+void initialize_filtration()
+{
+ filtration_vect_.clear();
+ filtration_vect_.reserve(num_simplices());
+ for(auto cpx_it = complex_simplex_range().begin();
+ cpx_it != complex_simplex_range().end(); ++cpx_it) { filtration_vect_.push_back(*cpx_it); }
+
+//the stable sort ensures the ordering heuristic
+ std::stable_sort(filtration_vect_.begin(),filtration_vect_.end(),is_before_in_filtration(this));
+}
+
+private:
+/** \brief Returns true iff the list of vertices of sh1
+ * is smaller than the list of vertices of sh2 w.r.t.
+ * lexicographic order on the lists read in reverse.
+ *
+ * It defines a StrictWeakOrdering on simplices. The Simplex_vertex_iterators
+ * must traverse the Vertex_handle in decreasing order. Reverse lexicographic order satisfy
+ * the property that a subsimplex of a simplex is always strictly smaller with this order. */
+bool reverse_lexicographic_order(Simplex_handle sh1, Simplex_handle sh2)
+{
+ Simplex_vertex_range rg1 = simplex_vertex_range(sh1);
+ Simplex_vertex_range rg2 = simplex_vertex_range(sh2);
+ Simplex_vertex_iterator it1 = rg1.begin();
+ Simplex_vertex_iterator it2 = rg2.begin();
+ while(it1 != rg1.end() && it2 != rg2.end())
+ {
+ if(*it1 == *it2) {++it1; ++it2;}
+ else { return *it1 < *it2; }
+ }
+ return ( (it1 == rg1.end()) && (it2 != rg2.end()) );
+}
+/** \brief StrictWeakOrdering, for the simplices, defined by the filtration.
+ *
+ * It corresponds to the partial order
+ * induced by the filtration values, with ties resolved using reverse lexicographic order.
+ * Reverse lexicographic order has the property to always consider the subsimplex of a simplex
+ * to be smaller. The filtration function must be monotonic. */
+struct is_before_in_filtration {
+ is_before_in_filtration(Simplex_tree * st) : st_(st) {}
+
+ bool operator()( const Simplex_handle sh1,
+ const Simplex_handle sh2 ) const
+ {
+ if(st_->filtration(sh1) != st_->filtration(sh2))
+ { return st_->filtration(sh1) < st_->filtration(sh2); }
+
+ return st_->reverse_lexicographic_order(sh1,sh2); //is sh1 a proper subface of sh2
+ }
+
+ Simplex_tree * st_;
+};
+
+public:
+/** \brief Inserts a 1-skeleton in an empty Simplex_tree.
+ *
+ * The Simplex_tree must contain no simplex when the method is
+ * called.
+ *
+ * Inserts all vertices and edges given by a OneSkeletonGraph.
+ * OneSkeletonGraph must be a model of boost::AdjacencyGraph,
+ * boost::EdgeListGraph and boost::PropertyGraph.
+ *
+ * The vertex filtration value is accessible through the property tag
+ * vertex_filtration_t.
+ * The edge filtration value is accessible through the property tag
+ * edge_filtration_t.
+ *
+ * boost::graph_traits<OneSkeletonGraph>::vertex_descriptor
+ * must be Vertex_handle.
+ * boost::graph_traits<OneSkeletonGraph>::directed_category
+ * must be undirected_tag. */
+ template< class OneSkeletonGraph >
+ void insert_graph( OneSkeletonGraph & skel_graph )
+ {
+ assert(num_simplices() == 0); //the simplex tree must be empty
+
+ if(boost::num_vertices(skel_graph) == 0) { return; }
+ if(num_edges(skel_graph) == 0) { dimension_ = 0; }
+ else { dimension_ = 1; }
+
+ num_simplices_ = boost::num_vertices(skel_graph) + boost::num_edges(skel_graph);
+ root_.members_.reserve(boost::num_vertices(skel_graph));
+
+ typename boost::graph_traits<OneSkeletonGraph>::vertex_iterator v_it, v_it_end;
+ for(tie(v_it,v_it_end) = boost::vertices(skel_graph);
+ v_it != v_it_end; ++v_it)
+ {
+ root_.members_.emplace_hint( root_.members_.end()
+ , *v_it
+ , Node(&root_
+ ,boost::get( vertex_filtration_t()
+ , skel_graph
+ , *v_it) ) );
+ }
+ typename boost::graph_traits<OneSkeletonGraph>::edge_iterator e_it, e_it_end;
+ for(tie(e_it,e_it_end) = boost::edges(skel_graph);
+ e_it != e_it_end; ++e_it)
+ {
+ auto u = source( *e_it, skel_graph ); auto v = target( *e_it, skel_graph );
+ if( u < v ) // count edges only once { std::swap(u,v); } // u < v
+ {
+ auto sh = find_vertex(u);
+ if(! has_children(sh) ) { sh->second.assign_children(new Siblings(&root_,sh->first)); }
+
+ sh->second.children()->members().emplace ( v
+ , Node( sh->second.children()
+ , boost::get( edge_filtration_t()
+ , skel_graph
+ , *e_it) ));
+ }
+ }
+}
+/** \brief Expands the Simplex_tree containing only its one skeleton
+ * until dimension max_dim.
+ *
+ * The expanded simplicial complex until dimension \f$d\f$
+ * attached to a graph \f$G\f$ is the maximal simplicial complex of
+ * dimension at most \f$d\f$ admitting the graph \f$G\f$ as \f$1\f$-skeleton.
+ * The filtration value assigned to a simplex is the maximal filtration
+ * value of one of its edges.
+ *
+ * The Simplex_tree must contain no simplex of dimension bigger than
+ * 1 when calling the method. */
+void expansion(int max_dim)
+{
+ dimension_ = max_dim;
+ for(Dictionary_it root_it = root_.members_.begin();
+ root_it != root_.members_.end(); ++root_it)
+ {
+ if(has_children(root_it))
+ { siblings_expansion(root_it->second.children(), max_dim-1); }
+ }
+ dimension_ = max_dim - dimension_;
+}
+private:
+/** \brief Recursive expansion of the simplex tree.*/
+void siblings_expansion ( Siblings * siblings, //must contain elements
+ int k)
+{
+ if(dimension_ > k) { dimension_ = k; }
+ if(k == 0) return;
+ Dictionary_it next = siblings->members().begin(); ++next;
+
+ static std::vector< std::pair<Vertex_handle , Node> > inter; // static, not thread-safe.
+ for(Dictionary_it s_h = siblings->members().begin();
+ s_h != siblings->members().end(); ++s_h,++next)
+ {
+ Simplex_handle root_sh = find_vertex(s_h->first);
+ if(has_children(root_sh))
+ {
+ intersection(inter, //output intersection
+ next, //begin
+ siblings->members().end(),//end
+ root_sh->second.children()->members().begin(),
+ root_sh->second.children()->members().end(),
+ s_h->second.filtration());
+ if(inter.size() != 0)
+ { this->num_simplices_ += inter.size();
+ Siblings * new_sib = new Siblings(siblings, //oncles
+ s_h->first, //parent
+ inter); //boost::container::ordered_unique_range_t
+ inter.clear();
+ s_h->second.assign_children(new_sib);
+ siblings_expansion(new_sib,k-1);
+ }
+ else { s_h->second.assign_children(siblings); //ensure the children property
+ inter.clear();}
+ }
+ }
+}
+/** \brief Intersects Dictionary 1 [begin1;end1) with Dictionary 2 [begin2,end2)
+ * and assigns the maximal possible Filtration_value to the Nodes. */
+void intersection ( std::vector< std::pair< Vertex_handle, Node > > & intersection
+ , Dictionary_it begin1
+ , Dictionary_it end1
+ , Dictionary_it begin2
+ , Dictionary_it end2
+ , Filtration_value filtration )
+{
+ if(begin1 == end1 || begin2 == end2) return;// 0;
+ while( true )
+ {
+ if( begin1->first == begin2->first )
+ {
+ intersection.push_back(std::pair< Vertex_handle, Node >( begin1->first,
+ Node( NULL
+ , maximum( begin1->second.filtration()
+ , begin2->second.filtration()
+ , filtration )
+ )
+ )
+ );
+ ++begin1; ++begin2;
+ if( begin1 == end1 || begin2 == end2 ) return;
+ }
+ else
+ {
+ if( begin1->first < begin2->first )
+ { ++begin1; if(begin1 == end1) return; }
+ else { ++begin2; if(begin2 == end2) return;}
+ }
+ }
+}
+/** Maximum over 3 values.*/
+Filtration_value maximum( Filtration_value a,
+ Filtration_value b,
+ Filtration_value c )
+{ Filtration_value max = ( a < b ) ? b : a;
+ return ( ( max < c ) ? c : max ); }
+
+public:
+/** \brief Write the hasse diagram of the simplicial complex in os.
+ *
+ * Each row in the file correspond to a simplex. A line is written:
+ * dim idx_1 ... idx_k fil where dim is the dimension of the simplex,
+ * idx_1 ... idx_k are the row index (starting from 0) of the simplices of the boundary
+ * of the simplex, and fil is its filtration value. */
+void print_hasse(std::ostream & os)
+{
+ os << num_simplices() << " " << std::endl;
+ for(auto sh : filtration_simplex_range(Indexing_tag()))
+ {
+ os << dimension(sh) << " ";
+ for(auto b_sh : boundary_simplex_range(sh)) { os << key(b_sh) << " "; }
+ os << filtration(sh) << " \n";
+ }
+}
+
+private:
+ Vertex_handle null_vertex_;
+/** \brief Upper bound on the filtration values of the simplices.*/
+ Filtration_value threshold_ ;
+/** \brief Total number of simplices in the complex, without the empty simplex.*/
+ size_t num_simplices_ ;
+/** \brief Set of simplex tree Nodes representing the vertices.*/
+ Siblings root_ ;
+/** \brief Simplices ordered according to a filtration.*/
+ std::vector< Simplex_handle > filtration_vect_ ;
+/** \brief Upper bound on the dimension of the simplicial complex.*/
+ int dimension_ ;
+};
+
+// Print a Simplex_tree in os.
+template< typename T1, typename T2, typename T3 >
+std::ostream& operator<< ( std::ostream & os
+ , Simplex_tree< T1, T2, T3 > & st )
+{
+ for(auto sh : st.filtration_simplex_range())
+ {
+ os << st.dimension(sh) << " ";
+ for(auto v : st.simplex_vertex_range(sh))
+ { os << v << " ";}
+ os << st.filtration(sh) << "\n";// TODO: VR - why adding the key ?? not read ?? << " " << st.key(sh) << " \n";
+ }
+ return os;
+}
+template< typename T1, typename T2, typename T3 >
+std::istream& operator>> ( std::istream & is
+ , Simplex_tree< T1, T2, T3 > & st )
+{
+ //assert(st.num_simplices() == 0);
+
+ std::vector< typename Simplex_tree<T1,T2,T3>::Vertex_handle > simplex;
+ typename Simplex_tree<T1,T2,T3>::Filtration_value fil;
+ typename Simplex_tree<T1,T2,T3>::Filtration_value max_fil = 0;
+ int max_dim = -1;
+ size_t num_simplices = 0;
+ while(read_simplex( is, simplex, fil )) //read all simplices in the file as a list of vertices
+ {
+ ++num_simplices;
+ int dim = (int)simplex.size() - 1; // Warning : simplex_size needs to be casted in int - Can be 0
+ if(max_dim < dim) { max_dim = dim;}
+ if(max_fil < fil) { max_fil = fil;}
+ st.insert(simplex,fil); //insert every simplex in the simplex tree
+ simplex.clear();
+ }
+ st.set_num_simplices(num_simplices);
+ st.set_dimension(max_dim);
+ st.set_filtration(max_fil);
+
+ return is;
+}
+
+/** @} */ //end defgroup simplex_tree
+
+} // namespace GUDHI
+
+#endif // GUDHI_FLAG_SIMPLEX_TREE_H