summaryrefslogtreecommitdiff
path: root/src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h')
-rw-r--r--src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h1593
1 files changed, 1593 insertions, 0 deletions
diff --git a/src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h b/src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h
new file mode 100644
index 00000000..125c6387
--- /dev/null
+++ b/src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h
@@ -0,0 +1,1593 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): David Salinas
+ *
+ * Copyright (C) 2014 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+#ifndef SKELETON_BLOCKER_COMPLEX_H_
+#define SKELETON_BLOCKER_COMPLEX_H_
+
+#include <gudhi/Skeleton_blocker/iterators/Skeleton_blockers_iterators.h>
+#include <gudhi/Skeleton_blocker_link_complex.h>
+#include <gudhi/Skeleton_blocker/Skeleton_blocker_link_superior.h>
+#include <gudhi/Skeleton_blocker/Skeleton_blocker_sub_complex.h>
+#include <gudhi/Skeleton_blocker/Skeleton_blocker_simplex.h>
+#include <gudhi/Skeleton_blocker/Skeleton_blocker_complex_visitor.h>
+#include <gudhi/Skeleton_blocker/internal/Top_faces.h>
+#include <gudhi/Skeleton_blocker/internal/Trie.h>
+#include <gudhi/Debug_utils.h>
+
+#include <boost/graph/adjacency_list.hpp>
+#include <boost/graph/connected_components.hpp>
+#include <boost/iterator/transform_iterator.hpp>
+#include <boost/range/adaptor/map.hpp>
+
+#include <iostream>
+#include <fstream>
+#include <sstream>
+#include <memory>
+#include <map>
+#include <list>
+#include <set>
+#include <vector>
+#include <string>
+#include <algorithm>
+#include <utility>
+
+namespace Gudhi {
+
+namespace skeleton_blocker {
+
+/**
+ *@class Skeleton_blocker_complex
+ *@brief Abstract Simplicial Complex represented with a skeleton/blockers pair.
+ *@ingroup skbl
+ */
+template<class SkeletonBlockerDS>
+class Skeleton_blocker_complex {
+ template<class ComplexType> friend class Vertex_iterator;
+ template<class ComplexType> friend class Neighbors_vertices_iterator;
+ template<class ComplexType> friend class Edge_iterator;
+ template<class ComplexType> friend class Edge_around_vertex_iterator;
+
+ template<class ComplexType> friend class Skeleton_blocker_link_complex;
+ template<class ComplexType> friend class Skeleton_blocker_link_superior;
+ template<class ComplexType> friend class Skeleton_blocker_sub_complex;
+
+ public:
+ /**
+ * @brief The type of stored vertex node, specified by the template SkeletonBlockerDS
+ */
+ typedef typename SkeletonBlockerDS::Graph_vertex Graph_vertex;
+
+ /**
+ * @brief The type of stored edge node, specified by the template SkeletonBlockerDS
+ */
+ typedef typename SkeletonBlockerDS::Graph_edge Graph_edge;
+
+ typedef typename SkeletonBlockerDS::Root_vertex_handle Root_vertex_handle;
+
+ /**
+ * @brief The type of an handle to a vertex of the complex.
+ */
+ typedef typename SkeletonBlockerDS::Vertex_handle Vertex_handle;
+ typedef typename Root_vertex_handle::boost_vertex_handle boost_vertex_handle;
+
+ /**
+ * @brief A ordered set of integers that represents a simplex.
+ */
+ typedef Skeleton_blocker_simplex<Vertex_handle> Simplex;
+ typedef Skeleton_blocker_simplex<Root_vertex_handle> Root_simplex_handle;
+
+ /**
+ * @brief Handle to a blocker of the complex.
+ */
+ typedef Simplex* Blocker_handle;
+
+ typedef typename Root_simplex_handle::Simplex_vertex_const_iterator Root_simplex_iterator;
+ typedef typename Simplex::Simplex_vertex_const_iterator Simplex_handle_iterator;
+
+ protected:
+ typedef typename boost::adjacency_list<boost::setS, // edges
+ boost::vecS, // vertices
+ boost::undirectedS, Graph_vertex, Graph_edge> Graph;
+ // todo/remark : edges are not sorted, it heavily penalizes computation for SuperiorLink
+ // (eg Link with greater vertices)
+ // that burdens simplex iteration / complex initialization via list of simplices.
+ // to avoid that, one should modify the graph by storing two lists of adjacency for every
+ // vertex, the one with superior and the one with lower vertices, that way there is
+ // no more extra cost for computation of SuperiorLink
+ typedef typename boost::graph_traits<Graph>::vertex_iterator boost_vertex_iterator;
+ typedef typename boost::graph_traits<Graph>::edge_iterator boost_edge_iterator;
+
+ protected:
+ typedef typename boost::graph_traits<Graph>::adjacency_iterator boost_adjacency_iterator;
+
+ public:
+ /**
+ * @brief Handle to an edge of the complex.
+ */
+ typedef typename boost::graph_traits<Graph>::edge_descriptor Edge_handle;
+
+ protected:
+ typedef std::multimap<Vertex_handle, Simplex *> BlockerMap;
+ typedef typename std::multimap<Vertex_handle, Simplex *>::value_type BlockerPair;
+ typedef typename std::multimap<Vertex_handle, Simplex *>::iterator BlockerMapIterator;
+ typedef typename std::multimap<Vertex_handle, Simplex *>::const_iterator BlockerMapConstIterator;
+
+ protected:
+ size_t num_vertices_;
+ size_t num_blockers_;
+
+ typedef Skeleton_blocker_complex_visitor<Vertex_handle> Visitor;
+ // typedef Visitor* Visitor_ptr;
+ Visitor* visitor;
+
+ /**
+ * @details If 'x' is a Vertex_handle of a vertex in the complex then degree[x] = d is its degree.
+ *
+ * This quantity is updated when adding/removing edge.
+ *
+ * This is useful because the operation
+ * list.size() is done in linear time.
+ */
+ std::vector<boost_vertex_handle> degree_;
+ Graph skeleton; /** 1-skeleton of the simplicial complex. */
+
+ /** Each vertex can access to the blockers passing through it. */
+ BlockerMap blocker_map_;
+
+ public:
+ /////////////////////////////////////////////////////////////////////////////
+ /** @name Constructors, Destructors
+ */
+ //@{
+
+ /**
+ *@brief constructs a simplicial complex with a given number of vertices and a visitor.
+ */
+ explicit Skeleton_blocker_complex(size_t num_vertices_ = 0, Visitor* visitor_ = NULL)
+ : visitor(visitor_) {
+ clear();
+ for (size_t i = 0; i < num_vertices_; ++i) {
+ add_vertex();
+ }
+ }
+
+ private:
+ // typedef Trie<Skeleton_blocker_complex<SkeletonBlockerDS>> STrie;
+ typedef Trie<Simplex> STrie;
+
+ public:
+ /**
+ * @brief Constructor with a list of simplices.
+ * @details is_flag_complex indicates if the complex is a flag complex or not (to know if blockers have to be computed or not).
+ */
+ template<typename SimpleHandleOutputIterator>
+ Skeleton_blocker_complex(SimpleHandleOutputIterator simplices_begin, SimpleHandleOutputIterator simplices_end,
+ bool is_flag_complex = false, Visitor* visitor_ = NULL)
+ : num_vertices_(0),
+ num_blockers_(0),
+ visitor(visitor_) {
+ add_vertices_and_edges(simplices_begin, simplices_end);
+
+ if (!is_flag_complex)
+ // need to compute blockers
+ add_blockers(simplices_begin, simplices_end);
+ }
+
+ private:
+ /**
+ * Add vertices and edges of a simplex in one pass
+ */
+ template<typename SimpleHandleOutputIterator>
+ void add_vertices_and_edges(SimpleHandleOutputIterator simplices_begin, SimpleHandleOutputIterator simplices_end) {
+ std::vector<std::pair<Vertex_handle, Vertex_handle>> edges;
+ // first pass to add vertices and edges
+ int num_vertex = -1;
+ for (auto s_it = simplices_begin; s_it != simplices_end; ++s_it) {
+ if (s_it->dimension() == 0) num_vertex = (std::max)(num_vertex, s_it->first_vertex().vertex);
+ if (s_it->dimension() == 1) edges.emplace_back(s_it->first_vertex(), s_it->last_vertex());
+ }
+ while (num_vertex-- >= 0) add_vertex();
+
+ for (const auto& e : edges)
+ add_edge_without_blockers(e.first, e.second);
+ }
+
+ template<typename SimpleHandleOutputIterator>
+ void add_blockers(SimpleHandleOutputIterator simplices_begin, SimpleHandleOutputIterator simplices_end) {
+ Tries<Simplex> tries(num_vertices(), simplices_begin, simplices_end);
+ tries.init_next_dimension();
+ auto simplices(tries.next_dimension_simplices());
+
+ while (!simplices.empty()) {
+ simplices = tries.next_dimension_simplices();
+ for (auto& sigma : simplices) {
+ // common_positive_neighbors is the set of vertices u such that
+ // for all s in sigma, us is an edge and u>s
+ Simplex common_positive_neighbors(tries.positive_neighbors(sigma.last_vertex()));
+ for (auto sigma_it = sigma.rbegin(); sigma_it != sigma.rend(); ++sigma_it)
+ if (sigma_it != sigma.rbegin())
+ common_positive_neighbors.intersection(tries.positive_neighbors(*sigma_it));
+
+ for (auto x : common_positive_neighbors) {
+ // first test that all edges sx are here for all s in sigma
+ bool all_edges_here = true;
+ for (auto s : sigma)
+ if (!contains_edge(x, s)) {
+ all_edges_here = false;
+ break;
+ }
+ if (!all_edges_here) continue;
+
+ // all edges of sigma \cup x are here
+ // we have a blocker if all proper faces of sigma \cup x
+ // are in the complex and if sigma \cup x is not in the complex
+ // the first is equivalent at checking if blocks(sigma \cup x) is true
+ // as all blockers of lower dimension have already been computed
+ sigma.add_vertex(x);
+ if (!tries.contains(sigma) && !blocks(sigma))
+ add_blocker(sigma);
+ sigma.remove_vertex(x);
+ }
+ }
+ }
+ }
+
+ public:
+ // We cannot use the default copy constructor since we need
+ // to make a copy of each of the blockers
+
+ Skeleton_blocker_complex(const Skeleton_blocker_complex& copy) {
+ visitor = NULL;
+ degree_ = copy.degree_;
+ skeleton = Graph(copy.skeleton);
+ num_vertices_ = copy.num_vertices_;
+
+ num_blockers_ = 0;
+ // we copy the blockers
+ for (auto blocker : copy.const_blocker_range()) {
+ add_blocker(*blocker);
+ }
+ }
+
+ /**
+ */
+ Skeleton_blocker_complex& operator=(const Skeleton_blocker_complex& copy) {
+ clear();
+ visitor = NULL;
+ degree_ = copy.degree_;
+ skeleton = Graph(copy.skeleton);
+ num_vertices_ = copy.num_vertices_;
+
+ num_blockers_ = 0;
+ // we copy the blockers
+ for (auto blocker : copy.const_blocker_range())
+ add_blocker(*blocker);
+ return *this;
+ }
+
+ /**
+ * return true if both complexes have the same simplices.
+ */
+ bool operator==(const Skeleton_blocker_complex& other) const {
+ if (other.num_vertices() != num_vertices()) return false;
+ if (other.num_edges() != num_edges()) return false;
+ if (other.num_blockers() != num_blockers()) return false;
+
+ for (auto v : vertex_range())
+ if (!other.contains_vertex(v)) return false;
+
+ for (auto e : edge_range())
+ if (!other.contains_edge(first_vertex(e), second_vertex(e))) return false;
+
+ for (const auto b : const_blocker_range())
+ if (!other.contains_blocker(*b)) return false;
+
+ return true;
+ }
+
+ bool operator!=(const Skeleton_blocker_complex& other) const {
+ return !(*this == other);
+ }
+
+ /**
+ * The destructor delete all blockers allocated.
+ */
+ virtual ~Skeleton_blocker_complex() {
+ clear();
+ }
+
+ /**
+ * @details Clears the simplicial complex. After a call to this function,
+ * blockers are destroyed. The 1-skeleton and the set of blockers
+ * are both empty.
+ */
+ virtual void clear() {
+ // xxx for now the responsabilty of freeing the visitor is for
+ // the user
+ visitor = NULL;
+
+ degree_.clear();
+ num_vertices_ = 0;
+
+ remove_blockers();
+
+ skeleton.clear();
+ }
+
+ /**
+ *@brief allows to change the visitor.
+ */
+ void set_visitor(Visitor* other_visitor) {
+ visitor = other_visitor;
+ }
+
+ //@}
+
+ /////////////////////////////////////////////////////////////////////////////
+ /** @name Vertices operations
+ */
+ //@{
+ public:
+ /**
+ * @brief Return a local Vertex_handle of a vertex given a global one.
+ * @remark Assume that the vertex is present in the complex.
+ */
+ Vertex_handle operator[](Root_vertex_handle global) const {
+ auto local(get_address(global));
+ assert(local);
+ return *local;
+ }
+
+ /**
+ * @brief Return the vertex node associated to local Vertex_handle.
+ * @remark Assume that the vertex is present in the complex.
+ */
+ Graph_vertex& operator[](Vertex_handle address) {
+ assert(
+ 0 <= address.vertex && address.vertex < boost::num_vertices(skeleton));
+ return skeleton[address.vertex];
+ }
+
+ /**
+ * @brief Return the vertex node associated to local Vertex_handle.
+ * @remark Assume that the vertex is present in the complex.
+ */
+ const Graph_vertex& operator[](Vertex_handle address) const {
+ assert(
+ 0 <= address.vertex && address.vertex < boost::num_vertices(skeleton));
+ return skeleton[address.vertex];
+ }
+
+ /**
+ * @brief Adds a vertex to the simplicial complex and returns its Vertex_handle.
+ * @remark Vertex representation is contiguous.
+ */
+ Vertex_handle add_vertex() {
+ Vertex_handle address(boost::add_vertex(skeleton));
+ num_vertices_++;
+ (*this)[address].activate();
+ // safe since we now that we are in the root complex and the field 'address' and 'id'
+ // are identical for every vertices
+ (*this)[address].set_id(Root_vertex_handle(address.vertex));
+ degree_.push_back(0);
+ if (visitor)
+ visitor->on_add_vertex(address);
+ return address;
+ }
+
+ /**
+ * @brief Remove a vertex from the simplicial complex
+ * @remark It just deactivates the vertex with a boolean flag but does not
+ * remove it from vertices from complexity issues.
+ */
+ void remove_vertex(Vertex_handle address) {
+ assert(contains_vertex(address));
+ // We remove b
+ boost::clear_vertex(address.vertex, skeleton);
+ (*this)[address].deactivate();
+ num_vertices_--;
+ degree_[address.vertex] = -1;
+ if (visitor)
+ visitor->on_remove_vertex(address);
+ }
+
+ /**
+ */
+ bool contains_vertex(Vertex_handle u) const {
+ Vertex_handle num_vertices(boost::num_vertices(skeleton));
+ if (u.vertex < 0 || u.vertex >= num_vertices)
+ return false;
+ return (*this)[u].is_active();
+ }
+
+ /**
+ */
+ bool contains_vertex(Root_vertex_handle u) const {
+ boost::optional<Vertex_handle> address = get_address(u);
+ return address && (*this)[*address].is_active();
+ }
+
+ /**
+ * @return true iff the simplicial complex contains all vertices
+ * of simplex sigma
+ */
+ bool contains_vertices(const Simplex & sigma) const {
+ for (auto vertex : sigma)
+ if (!contains_vertex(vertex))
+ return false;
+ return true;
+ }
+
+ /**
+ * @brief Given an Id return the address of the vertex having this Id in the complex.
+ * @remark For a simplicial complex, the address is the id but it may not be the case for a SubComplex.
+ */
+ virtual boost::optional<Vertex_handle> get_address(Root_vertex_handle id) const {
+ boost::optional<Vertex_handle> res;
+ int num_vertices = boost::num_vertices(skeleton);
+ if (id.vertex < num_vertices)
+ res = Vertex_handle(id.vertex);
+ return res;
+ }
+
+ /**
+ * return the id of a vertex of adress local present in the graph
+ */
+ Root_vertex_handle get_id(Vertex_handle local) const {
+ assert(0 <= local.vertex && local.vertex < boost::num_vertices(skeleton));
+ return (*this)[local].get_id();
+ }
+
+ /**
+ * @brief Convert an address of a vertex of a complex to the address in
+ * the current complex.
+ * @details
+ * If the current complex is a sub (or sup) complex of 'other', it converts
+ * the address of a vertex v expressed in 'other' to the address of the vertex
+ * v in the current one.
+ * @remark this methods uses Root_vertex_handle to identify the vertex and
+ * assumes the vertex is present in the current complex.
+ */
+ Vertex_handle convert_handle_from_another_complex(const Skeleton_blocker_complex& other,
+ Vertex_handle vh_in_other) const {
+ auto vh_in_current_complex = get_address(other.get_id(vh_in_other));
+ assert(vh_in_current_complex);
+ return *vh_in_current_complex;
+ }
+
+ /**
+ * @brief return the graph degree of a vertex.
+ */
+ int degree(Vertex_handle local) const {
+ assert(0 <= local.vertex && local.vertex < boost::num_vertices(skeleton));
+ return degree_[local.vertex];
+ }
+
+ //@}
+
+ /////////////////////////////////////////////////////////////////////////////
+ /** @name Edges operations
+ */
+ //@{
+ public:
+ /**
+ * @brief return an edge handle if the two vertices forms
+ * an edge in the complex
+ */
+ boost::optional<Edge_handle> operator[](
+ const std::pair<Vertex_handle, Vertex_handle>& ab) const {
+ boost::optional<Edge_handle> res;
+ std::pair<Edge_handle, bool> edge_pair(
+ boost::edge(ab.first.vertex, ab.second.vertex, skeleton));
+ if (edge_pair.second)
+ res = edge_pair.first;
+ return res;
+ }
+
+ /**
+ * @brief returns the stored node associated to an edge
+ */
+ Graph_edge& operator[](Edge_handle edge_handle) {
+ return skeleton[edge_handle];
+ }
+
+ /**
+ * @brief returns the stored node associated to an edge
+ */
+ const Graph_edge& operator[](Edge_handle edge_handle) const {
+ return skeleton[edge_handle];
+ }
+
+ /**
+ * @brief returns the first vertex of an edge
+ * @details it assumes that the edge is present in the complex
+ */
+ Vertex_handle first_vertex(Edge_handle edge_handle) const {
+ return static_cast<Vertex_handle> (source(edge_handle, skeleton));
+ }
+
+ /**
+ * @brief returns the first vertex of an edge
+ * @details it assumes that the edge is present in the complex
+ */
+ Vertex_handle second_vertex(Edge_handle edge_handle) const {
+ return static_cast<Vertex_handle> (target(edge_handle, skeleton));
+ }
+
+ /**
+ * @brief returns the simplex made with the two vertices of the edge
+ * @details it assumes that the edge is present in the complex
+
+ */
+ Simplex get_vertices(Edge_handle edge_handle) const {
+ auto edge((*this)[edge_handle]);
+ return Simplex((*this)[edge.first()], (*this)[edge.second()]);
+ }
+
+ /**
+ * @brief Adds an edge between vertices a and b.
+ * @details For instance, the complex contains edge 01 and 12, then calling
+ * add_edge with vertex 0 and 2 will create a complex containing
+ * the edges 01, 12, 20 but not the triangle 012 (and hence this complex
+ * will contains a blocker 012).
+ */
+ Edge_handle add_edge(Vertex_handle a, Vertex_handle b) {
+ // if the edge is already there we musnt go further
+ // as we may add blockers that should not be here
+ if (contains_edge(a, b))
+ return *((*this)[std::make_pair(a, b)]);
+ auto res = add_edge_without_blockers(a, b);
+ add_blockers_after_simplex_insertion(Simplex(a, b));
+ return res;
+ }
+
+ /**
+ * @brief Adds all edges of s in the complex.
+ */
+ void add_edge(const Simplex& s) {
+ for (auto i = s.begin(); i != s.end(); ++i)
+ for (auto j = i; ++j != s.end(); /**/)
+ add_edge(*i, *j);
+ }
+
+ /**
+ * @brief Adds an edge between vertices a and b without blockers.
+ * @details For instance, the complex contains edge 01 and 12, then calling
+ * add_edge with vertex 0 and 2 will create a complex containing
+ * the triangle 012.
+ */
+ Edge_handle add_edge_without_blockers(Vertex_handle a, Vertex_handle b) {
+ assert(contains_vertex(a) && contains_vertex(b));
+ assert(a != b);
+
+ auto edge_handle((*this)[std::make_pair(a, b)]);
+ if (!edge_handle) {
+ edge_handle = boost::add_edge(a.vertex, b.vertex, skeleton).first;
+ (*this)[*edge_handle].setId(get_id(a), get_id(b));
+ degree_[a.vertex]++;
+ degree_[b.vertex]++;
+ if (visitor)
+ visitor->on_add_edge_without_blockers(a, b);
+ }
+ return *edge_handle;
+ }
+
+ /**
+ * @brief Adds all edges of s in the complex without adding blockers.
+ */
+ void add_edge_without_blockers(Simplex s) {
+ for (auto i = s.begin(); i != s.end(); ++i) {
+ for (auto j = i; ++j != s.end(); /**/)
+ add_edge_without_blockers(*i, *j);
+ }
+ }
+
+ /**
+ * @brief Removes an edge from the simplicial complex and all its cofaces.
+ * @details returns the former Edge_handle representing the edge
+ */
+ virtual Edge_handle remove_edge(Vertex_handle a, Vertex_handle b) {
+ bool found;
+ Edge_handle edge;
+ tie(edge, found) = boost::edge(a.vertex, b.vertex, skeleton);
+ if (found) {
+ if (visitor)
+ visitor->on_remove_edge(a, b);
+ boost::remove_edge(a.vertex, b.vertex, skeleton);
+ degree_[a.vertex]--;
+ degree_[b.vertex]--;
+ }
+ return edge;
+ }
+
+ /**
+ * @brief Removes edge and its cofaces from the simplicial complex.
+ */
+ void remove_edge(Edge_handle edge) {
+ assert(contains_vertex(first_vertex(edge)));
+ assert(contains_vertex(second_vertex(edge)));
+ remove_edge(first_vertex(edge), second_vertex(edge));
+ }
+
+ /**
+ * @brief The complex is reduced to its set of vertices.
+ * All the edges and blockers are removed.
+ */
+ void keep_only_vertices() {
+ remove_blockers();
+
+ for (auto u : vertex_range()) {
+ while (this->degree(u) > 0) {
+ Vertex_handle v(*(adjacent_vertices(u.vertex, this->skeleton).first));
+ this->remove_edge(u, v);
+ }
+ }
+ }
+
+ /**
+ * @return true iff the simplicial complex contains an edge between
+ * vertices a and b
+ */
+ bool contains_edge(Vertex_handle a, Vertex_handle b) const {
+ // if (a.vertex<0 || b.vertex <0) return false;
+ return boost::edge(a.vertex, b.vertex, skeleton).second;
+ }
+
+ /**
+ * @return true iff the simplicial complex contains all vertices
+ * and all edges of simplex sigma
+ */
+ bool contains_edges(const Simplex & sigma) const {
+ for (auto i = sigma.begin(); i != sigma.end(); ++i) {
+ if (!contains_vertex(*i))
+ return false;
+ for (auto j = i; ++j != sigma.end();) {
+ if (!contains_edge(*i, *j))
+ return false;
+ }
+ }
+ return true;
+ }
+ //@}
+
+ /////////////////////////////////////////////////////////////////////////////
+ /** @name Blockers operations
+ */
+ //@{
+
+ /**
+ * @brief Adds the simplex to the set of blockers and
+ * returns a Blocker_handle toward it if was not present before and 0 otherwise.
+ */
+ Blocker_handle add_blocker(const Simplex& blocker) {
+ assert(blocker.dimension() > 1);
+ if (contains_blocker(blocker)) {
+ return 0;
+ } else {
+ if (visitor)
+ visitor->on_add_blocker(blocker);
+ Blocker_handle blocker_pt = new Simplex(blocker);
+ num_blockers_++;
+ auto vertex = blocker_pt->begin();
+ while (vertex != blocker_pt->end()) {
+ blocker_map_.insert(BlockerPair(*vertex, blocker_pt));
+ ++vertex;
+ }
+ return blocker_pt;
+ }
+ }
+
+ protected:
+ /**
+ * @brief Adds the simplex to the set of blockers
+ */
+ void add_blocker(Blocker_handle blocker) {
+ if (contains_blocker(*blocker)) {
+ // std::cerr << "ATTEMPT TO ADD A BLOCKER ALREADY THERE ---> BLOCKER IGNORED" << endl;
+ return;
+ } else {
+ if (visitor)
+ visitor->on_add_blocker(*blocker);
+ num_blockers_++;
+ auto vertex = blocker->begin();
+ while (vertex != blocker->end()) {
+ blocker_map_.insert(BlockerPair(*vertex, blocker));
+ ++vertex;
+ }
+ }
+ }
+
+ protected:
+ /**
+ * Removes sigma from the blocker map of vertex v
+ */
+ void remove_blocker(const Blocker_handle sigma, Vertex_handle v) {
+ Complex_blocker_around_vertex_iterator blocker;
+ for (blocker = blocker_range(v).begin(); blocker != blocker_range(v).end();
+ ++blocker) {
+ if (*blocker == sigma)
+ break;
+ }
+ if (*blocker != sigma) {
+ std::cerr
+ << "bug ((*blocker).second == sigma) ie try to remove a blocker not present\n";
+ assert(false);
+ } else {
+ blocker_map_.erase(blocker.current_position());
+ }
+ }
+
+ public:
+ /**
+ * @brief Removes the simplex from the set of blockers.
+ * @remark sigma has to belongs to the set of blockers
+ */
+ void remove_blocker(const Blocker_handle sigma) {
+ for (auto vertex : *sigma)
+ remove_blocker(sigma, vertex);
+ num_blockers_--;
+ }
+
+ /**
+ * @brief Remove all blockers, in other words, it expand the simplicial
+ * complex to the smallest flag complex that contains it.
+ */
+ void remove_blockers() {
+ // Desallocate the blockers
+ while (!blocker_map_.empty()) {
+ delete_blocker(blocker_map_.begin()->second);
+ }
+ num_blockers_ = 0;
+ blocker_map_.clear();
+ }
+
+ protected:
+ /**
+ * Removes the simplex sigma from the set of blockers.
+ * sigma has to belongs to the set of blockers
+ *
+ * @remark contrarily to delete_blockers does not call the destructor
+ */
+ void remove_blocker(const Simplex& sigma) {
+ assert(contains_blocker(sigma));
+ for (auto vertex : sigma)
+ remove_blocker(sigma, vertex);
+ num_blockers_--;
+ }
+
+ public:
+ /**
+ * Removes the simplex s from the set of blockers
+ * and desallocate s.
+ */
+ void delete_blocker(Blocker_handle sigma) {
+ if (visitor)
+ visitor->on_delete_blocker(sigma);
+ remove_blocker(sigma);
+ delete sigma;
+ }
+
+ /**
+ * @return true iff s is a blocker of the simplicial complex
+ */
+ bool contains_blocker(const Blocker_handle s) const {
+ if (s->dimension() < 2)
+ return false;
+
+ Vertex_handle a = s->first_vertex();
+
+ for (const auto blocker : const_blocker_range(a)) {
+ if (s == *blocker)
+ return true;
+ }
+ return false;
+ }
+
+ /**
+ * @return true iff s is a blocker of the simplicial complex
+ */
+ bool contains_blocker(const Simplex & s) const {
+ if (s.dimension() < 2)
+ return false;
+
+ Vertex_handle a = s.first_vertex();
+
+ for (auto blocker : const_blocker_range(a)) {
+ if (s == *blocker)
+ return true;
+ }
+ return false;
+ }
+
+ private:
+ /**
+ * @return true iff a blocker of the simplicial complex
+ * is a face of sigma.
+ */
+ bool blocks(const Simplex & sigma) const {
+ for (auto s : sigma)
+ for (auto blocker : const_blocker_range(s))
+ if (sigma.contains(*blocker))
+ return true;
+ return false;
+ }
+
+ //@}
+
+ protected:
+ /**
+ * @details Adds to simplex the neighbours of v e.g. \f$ n \leftarrow n \cup N(v) \f$.
+ * If keep_only_superior is true then only vertices that are greater than v are added.
+ */
+ virtual void add_neighbours(Vertex_handle v, Simplex & n,
+ bool keep_only_superior = false) const {
+ boost_adjacency_iterator ai, ai_end;
+ for (tie(ai, ai_end) = adjacent_vertices(v.vertex, skeleton); ai != ai_end;
+ ++ai) {
+ Vertex_handle value(*ai);
+ if (keep_only_superior) {
+ if (value > v.vertex) {
+ n.add_vertex(value);
+ }
+ } else {
+ n.add_vertex(value);
+ }
+ }
+ }
+
+ /**
+ * @details Add to simplex res all vertices which are
+ * neighbours of alpha: ie \f$ res \leftarrow res \cup N(alpha) \f$.
+ *
+ * If 'keep_only_superior' is true then only vertices that are greater than alpha are added.
+ * todo revoir
+ *
+ */
+ virtual void add_neighbours(const Simplex &alpha, Simplex & res,
+ bool keep_only_superior = false) const {
+ res.clear();
+ auto alpha_vertex = alpha.begin();
+ add_neighbours(*alpha_vertex, res, keep_only_superior);
+ for (alpha_vertex = (alpha.begin())++; alpha_vertex != alpha.end();
+ ++alpha_vertex)
+ keep_neighbours(*alpha_vertex, res, keep_only_superior);
+ }
+
+ /**
+ * @details Remove from simplex n all vertices which are
+ * not neighbours of v e.g. \f$ res \leftarrow res \cap N(v) \f$.
+ * If 'keep_only_superior' is true then only vertices that are greater than v are keeped.
+ */
+ virtual void keep_neighbours(Vertex_handle v, Simplex& res,
+ bool keep_only_superior = false) const {
+ Simplex nv;
+ add_neighbours(v, nv, keep_only_superior);
+ res.intersection(nv);
+ }
+
+ /**
+ * @details Remove from simplex all vertices which are
+ * neighbours of v eg \f$ res \leftarrow res \setminus N(v) \f$.
+ * If 'keep_only_superior' is true then only vertices that are greater than v are added.
+ */
+ virtual void remove_neighbours(Vertex_handle v, Simplex & res,
+ bool keep_only_superior = false) const {
+ Simplex nv;
+ add_neighbours(v, nv, keep_only_superior);
+ res.difference(nv);
+ }
+
+ public:
+ typedef Skeleton_blocker_link_complex<Skeleton_blocker_complex> Link_complex;
+
+ /**
+ * Constructs the link of 'simplex' with points coordinates.
+ */
+ Link_complex link(Vertex_handle v) const {
+ return Link_complex(*this, Simplex(v));
+ }
+
+ /**
+ * Constructs the link of 'simplex' with points coordinates.
+ */
+ Link_complex link(Edge_handle edge) const {
+ return Link_complex(*this, edge);
+ }
+
+ /**
+ * Constructs the link of 'simplex' with points coordinates.
+ */
+ Link_complex link(const Simplex& simplex) const {
+ return Link_complex(*this, simplex);
+ }
+
+ /**
+ * @brief Compute the local vertices of 's' in the current complex
+ * If one of them is not present in the complex then the return value is uninitialized.
+ *
+ *
+ */
+ // xxx rename get_address et place un using dans sub_complex
+
+ boost::optional<Simplex> get_simplex_address(
+ const Root_simplex_handle& s) const {
+ boost::optional<Simplex> res;
+
+ Simplex s_address;
+ // Root_simplex_const_iterator i;
+ for (auto i = s.begin(); i != s.end(); ++i) {
+ boost::optional<Vertex_handle> address = get_address(*i);
+ if (!address)
+ return res;
+ else
+ s_address.add_vertex(*address);
+ }
+ res = s_address;
+ return res;
+ }
+
+ /**
+ * @brief returns a simplex with vertices which are the id of vertices of the
+ * argument.
+ */
+ Root_simplex_handle get_id(const Simplex& local_simplex) const {
+ Root_simplex_handle global_simplex;
+ for (auto x = local_simplex.begin(); x != local_simplex.end(); ++x) {
+ global_simplex.add_vertex(get_id(*x));
+ }
+ return global_simplex;
+ }
+
+ /**
+ * @brief returns true iff the simplex s belongs to the simplicial
+ * complex.
+ */
+ virtual bool contains(const Simplex & s) const {
+ if (s.dimension() == -1) {
+ return false;
+ } else if (s.dimension() == 0) {
+ return contains_vertex(s.first_vertex());
+ } else {
+ return (contains_edges(s) && !blocks(s));
+ }
+ }
+
+ /*
+ * @brief returnrs true iff the complex is empty.
+ */
+ bool empty() const {
+ return num_vertices() == 0;
+ }
+
+ /*
+ * @brief returns the number of vertices in the complex.
+ */
+ int num_vertices() const {
+ // remark boost::num_vertices(skeleton) counts deactivated vertices
+ return num_vertices_;
+ }
+
+ /*
+ * @brief returns the number of edges in the complex.
+ * @details currently in O(n)
+ */
+ // todo cache the value
+
+ int num_edges() const {
+ return boost::num_edges(skeleton);
+ }
+
+ int num_triangles() const {
+ auto triangles = triangle_range();
+ return std::distance(triangles.begin(), triangles.end());
+ }
+
+ /*
+ * @brief returns the number of simplices of a given dimension in the complex.
+ */
+ size_t num_simplices() const {
+ auto simplices = complex_simplex_range();
+ return std::distance(simplices.begin(), simplices.end());
+ }
+
+ /*
+ * @brief returns the number of simplices of a given dimension in the complex.
+ */
+ size_t num_simplices(int dimension) const {
+ // TODO(DS): iterator on k-simplices
+ size_t res = 0;
+ for (const auto& s : complex_simplex_range())
+ if (s.dimension() == dimension)
+ ++res;
+ return res;
+ }
+
+ /*
+ * @brief returns the number of blockers in the complex.
+ */
+ size_t num_blockers() const {
+ return num_blockers_;
+ }
+
+ /*
+ * @brief returns true iff the graph of the 1-skeleton of the complex is complete.
+ */
+ bool complete() const {
+ return (num_vertices() * (num_vertices() - 1)) / 2 == num_edges();
+ }
+
+ /**
+ * @brief returns the number of connected components in the graph of the 1-skeleton.
+ */
+ int num_connected_components() const {
+ int num_vert_collapsed = skeleton.vertex_set().size() - num_vertices();
+ std::vector<int> component(skeleton.vertex_set().size());
+ return boost::connected_components(this->skeleton, &component[0])
+ - num_vert_collapsed;
+ }
+
+ /**
+ * @brief %Test if the complex is a cone.
+ * @details Runs in O(n) where n is the number of vertices.
+ */
+ bool is_cone() const {
+ if (num_vertices() == 0)
+ return false;
+ if (num_vertices() == 1)
+ return true;
+ for (auto vi : vertex_range()) {
+ // xxx todo faire une methode bool is_in_blocker(Vertex_handle)
+ if (blocker_map_.find(vi) == blocker_map_.end()) {
+ // no blocker passes through the vertex, we just need to
+ // check if the current vertex is linked to all others vertices of the complex
+ if (degree_[vi.vertex] == num_vertices() - 1)
+ return true;
+ }
+ }
+ return false;
+ }
+
+ //@}
+ /** @name Simplification operations
+ */
+ //@{
+
+ /**
+ * Returns true iff the blocker 'sigma' is popable.
+ * To define popable, let us call 'L' the complex that
+ * consists in the current complex without the blocker 'sigma'.
+ * A blocker 'sigma' is then "popable" if the link of 'sigma'
+ * in L is reducible.
+ *
+ */
+ bool is_popable_blocker(Blocker_handle sigma) const;
+
+ /**
+ * Removes all the popable blockers of the complex and delete them.
+ * @returns the number of popable blockers deleted
+ */
+ void remove_popable_blockers();
+
+ /**
+ * Removes all the popable blockers of the complex passing through v and delete them.
+ */
+ void remove_popable_blockers(Vertex_handle v);
+
+ /**
+ * @brief Removes all the popable blockers of the complex passing through v and delete them.
+ * Also remove popable blockers in the neighborhood if they became popable.
+ *
+ */
+ void remove_all_popable_blockers(Vertex_handle v);
+
+ /**
+ * Remove the star of the vertex 'v'
+ */
+ void remove_star(Vertex_handle v);
+
+ private:
+ /**
+ * after removing the star of a simplex, blockers sigma that contains this simplex must be removed.
+ * Furthermore, all simplices tau of the form sigma \setminus simplex_to_be_removed must be added
+ * whenever the dimension of tau is at least 2.
+ */
+ void update_blockers_after_remove_star_of_vertex_or_edge(const Simplex& simplex_to_be_removed);
+
+ public:
+ /**
+ * Remove the star of the edge connecting vertices a and b.
+ * @returns the number of blocker that have been removed
+ */
+ void remove_star(Vertex_handle a, Vertex_handle b);
+
+ /**
+ * Remove the star of the edge 'e'.
+ */
+ void remove_star(Edge_handle e);
+
+ /**
+ * Remove the star of the simplex 'sigma' which needs to belong to the complex
+ */
+ void remove_star(const Simplex& sigma);
+
+ /**
+ * @brief add a simplex and all its faces.
+ * @details the simplex must have dimension greater than one (otherwise use add_vertex or add_edge_without_blockers).
+ */
+ void add_simplex(const Simplex& sigma);
+
+ private:
+ void add_blockers_after_simplex_insertion(Simplex s);
+
+ /**
+ * remove all blockers that contains sigma
+ */
+ void remove_blocker_containing_simplex(const Simplex& sigma);
+
+ /**
+ * remove all blockers that contains sigma
+ */
+ void remove_blocker_include_in_simplex(const Simplex& sigma);
+
+ public:
+ enum simplifiable_status {
+ NOT_HOMOTOPY_EQ, MAYBE_HOMOTOPY_EQ, HOMOTOPY_EQ
+ };
+
+ simplifiable_status is_remove_star_homotopy_preserving(const Simplex& simplex) {
+ // todo write a virtual method 'link' in Skeleton_blocker_complex which will be overloaded by the current one of
+ // Skeleton_blocker_geometric_complex
+ // then call it there to build the link and return the value of link.is_contractible()
+ return MAYBE_HOMOTOPY_EQ;
+ }
+
+ enum contractible_status {
+ NOT_CONTRACTIBLE, MAYBE_CONTRACTIBLE, CONTRACTIBLE
+ };
+
+ /**
+ * @brief %Test if the complex is reducible using a strategy defined in the class
+ * (by default it tests if the complex is a cone)
+ * @details Note that NO could be returned if some invariant ensures that the complex
+ * is not a point (for instance if the euler characteristic is different from 1).
+ * This function will surely have to return MAYBE in some case because the
+ * associated problem is undecidable but it in practice, it can often
+ * be solved with the help of geometry.
+ */
+ virtual contractible_status is_contractible() const {
+ if (this->is_cone()) {
+ return CONTRACTIBLE;
+ } else {
+ return MAYBE_CONTRACTIBLE;
+ }
+ }
+ //@}
+
+ /** @name Edge contraction operations
+ */
+ //@{
+
+ /**
+ * @return If ignore_popable_blockers is true
+ * then the result is true iff the link condition at edge ab is satisfied
+ * or equivalently iff no blocker contains ab.
+ * If ignore_popable_blockers is false then the
+ * result is true iff all blocker containing ab are popable.
+ */
+ bool link_condition(Vertex_handle a, Vertex_handle b, bool ignore_popable_blockers = false) const {
+ for (auto blocker : this->const_blocker_range(a))
+ if (blocker->contains(b)) {
+ // false if ignore_popable_blockers is false
+ // otherwise the blocker has to be popable
+ return ignore_popable_blockers && is_popable_blocker(blocker);
+ }
+ return true;
+ }
+
+ /**
+ * @return If ignore_popable_blockers is true
+ * then the result is true iff the link condition at edge ab is satisfied
+ * or equivalently iff no blocker contains ab.
+ * If ignore_popable_blockers is false then the
+ * result is true iff all blocker containing ab are popable.
+ */
+ bool link_condition(Edge_handle e, bool ignore_popable_blockers = false) const {
+ const Graph_edge& edge = (*this)[e];
+ assert(this->get_address(edge.first()));
+ assert(this->get_address(edge.second()));
+ Vertex_handle a(*this->get_address(edge.first()));
+ Vertex_handle b(*this->get_address(edge.second()));
+ return link_condition(a, b, ignore_popable_blockers);
+ }
+
+ protected:
+ /**
+ * Compute simplices beta such that a.beta is an order 0 blocker
+ * that may be used to construct a new blocker after contracting ab.
+ * It requires that the link condition is satisfied.
+ */
+ void tip_blockers(Vertex_handle a, Vertex_handle b, std::vector<Simplex> & buffer) const;
+
+ private:
+ /**
+ * @brief "Replace" the edge 'bx' by the edge 'ax'.
+ * Assume that the edge 'bx' was present whereas 'ax' was not.
+ * Precisely, it does not replace edges, but remove 'bx' and then add 'ax'.
+ * The visitor 'on_swaped_edge' is called just after edge 'ax' had been added
+ * and just before edge 'bx' had been removed. That way, it can
+ * eventually access to information of 'ax'.
+ */
+ void swap_edge(Vertex_handle a, Vertex_handle b, Vertex_handle x);
+
+ private:
+ /**
+ * @brief removes all blockers passing through the edge 'ab'
+ */
+ void delete_blockers_around_vertex(Vertex_handle v);
+
+ /**
+ * @brief removes all blockers passing through the edge 'ab'
+ */
+ void delete_blockers_around_edge(Vertex_handle a, Vertex_handle b);
+
+ public:
+ /**
+ * Contracts the edge.
+ * @remark If the link condition Link(ab) = Link(a) inter Link(b) is not satisfied,
+ * it removes first all blockers passing through 'ab'
+ */
+ void contract_edge(Edge_handle edge) {
+ contract_edge(this->first_vertex(edge), this->second_vertex(edge));
+ }
+
+ /**
+ * Contracts the edge connecting vertices a and b.
+ * @remark If the link condition Link(ab) = Link(a) inter Link(b) is not satisfied,
+ * it removes first all blockers passing through 'ab'
+ */
+ void contract_edge(Vertex_handle a, Vertex_handle b);
+
+ private:
+ void get_blockers_to_be_added_after_contraction(Vertex_handle a, Vertex_handle b,
+ std::set<Simplex>& blockers_to_add);
+ /**
+ * delete all blockers that passes through a or b
+ */
+ void delete_blockers_around_vertices(Vertex_handle a, Vertex_handle b);
+ void update_edges_after_contraction(Vertex_handle a, Vertex_handle b);
+ void notify_changed_edges(Vertex_handle a);
+ //@}
+
+ public:
+ /////////////////////////////////////////////////////////////////////////////
+ /** @name Vertex iterators
+ */
+ //@{
+ typedef Vertex_iterator<Skeleton_blocker_complex> Complex_vertex_iterator;
+
+ //
+ // Range over the vertices of the simplicial complex.
+ // Methods .begin() and .end() return a Complex_vertex_iterator.
+ //
+ typedef boost::iterator_range<Complex_vertex_iterator> Complex_vertex_range;
+
+ /**
+ * @brief Returns a Complex_vertex_range over all vertices of the complex
+ */
+ Complex_vertex_range vertex_range() const {
+ auto begin = Complex_vertex_iterator(this);
+ auto end = Complex_vertex_iterator(this, 0);
+ return Complex_vertex_range(begin, end);
+ }
+
+ typedef Neighbors_vertices_iterator<Skeleton_blocker_complex> Complex_neighbors_vertices_iterator;
+
+
+ typedef boost::iterator_range<Complex_neighbors_vertices_iterator> Complex_neighbors_vertices_range;
+
+ /**
+ * @brief Returns a Complex_edge_range over all edges of the simplicial complex that passes trough v
+ */
+ Complex_neighbors_vertices_range vertex_range(Vertex_handle v) const {
+ auto begin = Complex_neighbors_vertices_iterator(this, v);
+ auto end = Complex_neighbors_vertices_iterator(this, v, 0);
+ return Complex_neighbors_vertices_range(begin, end);
+ }
+
+ //@}
+
+ /** @name Edge iterators
+ */
+ //@{
+
+ typedef Edge_iterator<Skeleton_blocker_complex> Complex_edge_iterator;
+
+
+ typedef boost::iterator_range<Complex_edge_iterator> Complex_edge_range;
+
+ /**
+ * @brief Returns a Complex_edge_range over all edges of the simplicial complex
+ */
+ Complex_edge_range edge_range() const {
+ auto begin = Complex_edge_iterator(this);
+ auto end = Complex_edge_iterator(this, 0);
+ return Complex_edge_range(begin, end);
+ }
+
+
+ typedef Edge_around_vertex_iterator<Skeleton_blocker_complex> Complex_edge_around_vertex_iterator;
+
+
+ typedef boost::iterator_range <Complex_edge_around_vertex_iterator> Complex_edge_around_vertex_range;
+
+ /**
+ * @brief Returns a Complex_edge_range over all edges of the simplicial complex that passes
+ * through 'v'
+ */
+ Complex_edge_around_vertex_range edge_range(Vertex_handle v) const {
+ auto begin = Complex_edge_around_vertex_iterator(this, v);
+ auto end = Complex_edge_around_vertex_iterator(this, v, 0);
+ return Complex_edge_around_vertex_range(begin, end);
+ }
+
+ //@}
+
+ /** @name Triangles iterators
+ */
+ //@{
+ private:
+ typedef Skeleton_blocker_link_complex<Skeleton_blocker_complex<SkeletonBlockerDS> > Link;
+ typedef Skeleton_blocker_link_superior<Skeleton_blocker_complex<SkeletonBlockerDS> > Superior_link;
+
+ public:
+ typedef Triangle_around_vertex_iterator<Skeleton_blocker_complex, Superior_link>
+ Superior_triangle_around_vertex_iterator;
+ typedef boost::iterator_range < Triangle_around_vertex_iterator<Skeleton_blocker_complex, Link> >
+ Complex_triangle_around_vertex_range;
+
+ /**
+ * @brief Range over triangles around a vertex of the simplicial complex.
+ * Methods .begin() and .end() return a Triangle_around_vertex_iterator.
+ *
+ */
+ Complex_triangle_around_vertex_range triangle_range(Vertex_handle v) const {
+ auto begin = Triangle_around_vertex_iterator<Skeleton_blocker_complex, Link>(this, v);
+ auto end = Triangle_around_vertex_iterator<Skeleton_blocker_complex, Link>(this, v, 0);
+ return Complex_triangle_around_vertex_range(begin, end);
+ }
+
+ typedef boost::iterator_range<Triangle_iterator<Skeleton_blocker_complex> > Complex_triangle_range;
+ typedef Triangle_iterator<Skeleton_blocker_complex> Complex_triangle_iterator;
+
+ /**
+ * @brief Range over triangles of the simplicial complex.
+ * Methods .begin() and .end() return a Triangle_around_vertex_iterator.
+ *
+ */
+ Complex_triangle_range triangle_range() const {
+ auto end = Triangle_iterator<Skeleton_blocker_complex>(this, 0);
+ if (empty()) {
+ return Complex_triangle_range(end, end);
+ } else {
+ auto begin = Triangle_iterator<Skeleton_blocker_complex>(this);
+ return Complex_triangle_range(begin, end);
+ }
+ }
+
+ //@}
+
+ /** @name Simplices iterators
+ */
+ //@{
+ typedef Simplex_around_vertex_iterator<Skeleton_blocker_complex, Link> Complex_simplex_around_vertex_iterator;
+
+ /**
+ * @brief Range over the simplices of the simplicial complex around a vertex.
+ * Methods .begin() and .end() return a Complex_simplex_around_vertex_iterator.
+ */
+ typedef boost::iterator_range < Complex_simplex_around_vertex_iterator > Complex_simplex_around_vertex_range;
+
+ /**
+ * @brief Returns a Complex_simplex_around_vertex_range over all the simplices around a vertex of the complex
+ */
+ Complex_simplex_around_vertex_range star_simplex_range(Vertex_handle v) const {
+ assert(contains_vertex(v));
+ return Complex_simplex_around_vertex_range(
+ Complex_simplex_around_vertex_iterator(this, v),
+ Complex_simplex_around_vertex_iterator(this, v, true));
+ }
+ typedef Simplex_coboundary_iterator<Skeleton_blocker_complex, Link> Complex_simplex_coboundary_iterator;
+
+ /**
+ * @brief Range over the simplices of the coboundary of a simplex.
+ * Methods .begin() and .end() return a Complex_simplex_coboundary_iterator.
+ */
+ typedef boost::iterator_range < Complex_simplex_coboundary_iterator > Complex_coboundary_range;
+
+ /**
+ * @brief Returns a Complex_simplex_coboundary_iterator over the simplices of the coboundary of a simplex.
+ */
+ Complex_coboundary_range coboundary_range(const Simplex& s) const {
+ assert(contains(s));
+ return Complex_coboundary_range(Complex_simplex_coboundary_iterator(this, s),
+ Complex_simplex_coboundary_iterator(this, s, true));
+ }
+
+ // typedef Simplex_iterator<Skeleton_blocker_complex,Superior_link> Complex_simplex_iterator;
+ typedef Simplex_iterator<Skeleton_blocker_complex> Complex_simplex_iterator;
+
+ typedef boost::iterator_range < Complex_simplex_iterator > Complex_simplex_range;
+
+ /**
+ * @brief Returns a Complex_simplex_range over all the simplices of the complex
+ */
+ Complex_simplex_range complex_simplex_range() const {
+ Complex_simplex_iterator end(this, true);
+ if (empty()) {
+ return Complex_simplex_range(end, end);
+ } else {
+ Complex_simplex_iterator begin(this);
+ return Complex_simplex_range(begin, end);
+ }
+ }
+
+ //@}
+
+ /** @name Blockers iterators
+ */
+ //@{
+ private:
+ /**
+ * @brief Iterator over the blockers adjacent to a vertex
+ */
+ typedef Blocker_iterator_around_vertex_internal<
+ typename std::multimap<Vertex_handle, Simplex *>::iterator,
+ Blocker_handle>
+ Complex_blocker_around_vertex_iterator;
+
+ /**
+ * @brief Iterator over (constant) blockers adjacent to a vertex
+ */
+ typedef Blocker_iterator_around_vertex_internal<
+ typename std::multimap<Vertex_handle, Simplex *>::const_iterator,
+ const Blocker_handle>
+ Const_complex_blocker_around_vertex_iterator;
+
+ typedef boost::iterator_range <Complex_blocker_around_vertex_iterator> Complex_blocker_around_vertex_range;
+ typedef boost::iterator_range <Const_complex_blocker_around_vertex_iterator>
+ Const_complex_blocker_around_vertex_range;
+
+ public:
+ /**
+ * @brief Returns a range of the blockers of the complex passing through a vertex
+ */
+ Complex_blocker_around_vertex_range blocker_range(Vertex_handle v) {
+ auto begin = Complex_blocker_around_vertex_iterator(blocker_map_.lower_bound(v));
+ auto end = Complex_blocker_around_vertex_iterator(blocker_map_.upper_bound(v));
+ return Complex_blocker_around_vertex_range(begin, end);
+ }
+
+ /**
+ * @brief Returns a range of the blockers of the complex passing through a vertex
+ */
+ Const_complex_blocker_around_vertex_range const_blocker_range(Vertex_handle v) const {
+ auto begin = Const_complex_blocker_around_vertex_iterator(blocker_map_.lower_bound(v));
+ auto end = Const_complex_blocker_around_vertex_iterator(blocker_map_.upper_bound(v));
+ return Const_complex_blocker_around_vertex_range(begin, end);
+ }
+
+ private:
+ /**
+ * @brief Iterator over the blockers.
+ */
+ typedef Blocker_iterator_internal<
+ typename std::multimap<Vertex_handle, Simplex *>::iterator,
+ Blocker_handle>
+ Complex_blocker_iterator;
+
+ /**
+ * @brief Iterator over the (constant) blockers.
+ */
+ typedef Blocker_iterator_internal<
+ typename std::multimap<Vertex_handle, Simplex *>::const_iterator,
+ const Blocker_handle>
+ Const_complex_blocker_iterator;
+
+ typedef boost::iterator_range <Complex_blocker_iterator> Complex_blocker_range;
+ typedef boost::iterator_range <Const_complex_blocker_iterator> Const_complex_blocker_range;
+
+ public:
+ /**
+ * @brief Returns a range of the blockers of the complex
+ */
+ Complex_blocker_range blocker_range() {
+ auto begin = Complex_blocker_iterator(blocker_map_.begin(), blocker_map_.end());
+ auto end = Complex_blocker_iterator(blocker_map_.end(), blocker_map_.end());
+ return Complex_blocker_range(begin, end);
+ }
+
+ /**
+ * @brief Returns a range of the blockers of the complex
+ */
+ Const_complex_blocker_range const_blocker_range() const {
+ auto begin = Const_complex_blocker_iterator(blocker_map_.begin(), blocker_map_.end());
+ auto end = Const_complex_blocker_iterator(blocker_map_.end(), blocker_map_.end());
+ return Const_complex_blocker_range(begin, end);
+ }
+
+ //@}
+
+ /////////////////////////////////////////////////////////////////////////////
+ /** @name Print and IO methods
+ */
+ //@{
+ public:
+ std::string to_string() const {
+ std::ostringstream stream;
+ stream << num_vertices() << " vertices:\n" << vertices_to_string() << std::endl;
+ stream << num_edges() << " edges:\n" << edges_to_string() << std::endl;
+ stream << num_blockers() << " blockers:\n" << blockers_to_string() << std::endl;
+ return stream.str();
+ }
+
+ std::string vertices_to_string() const {
+ std::ostringstream stream;
+ for (auto vertex : vertex_range()) {
+ stream << "{" << (*this)[vertex].get_id() << "} ";
+ }
+ stream << std::endl;
+ return stream.str();
+ }
+
+ std::string edges_to_string() const {
+ std::ostringstream stream;
+ for (auto edge : edge_range())
+ stream << "{" << (*this)[edge].first() << "," << (*this)[edge].second() << "} ";
+ stream << std::endl;
+ return stream.str();
+ }
+
+ std::string blockers_to_string() const {
+ std::ostringstream stream;
+
+ for (auto b : const_blocker_range())
+ stream << *b << std::endl;
+ return stream.str();
+ }
+ //@}
+};
+
+/**
+ * build a simplicial complex from a collection
+ * of top faces.
+ * return the total number of simplices
+ */
+template<typename Complex, typename SimplexHandleIterator>
+Complex make_complex_from_top_faces(SimplexHandleIterator simplices_begin, SimplexHandleIterator simplices_end,
+ bool is_flag_complex = false) {
+ // TODO(DS): use add_simplex instead! should be more efficient and more elegant :)
+ typedef typename Complex::Simplex Simplex;
+ std::vector<Simplex> simplices;
+ for (auto top_face = simplices_begin; top_face != simplices_end; ++top_face) {
+ auto subfaces_topface = subfaces(*top_face);
+ simplices.insert(simplices.end(), subfaces_topface.begin(), subfaces_topface.end());
+ }
+ return Complex(simplices.begin(), simplices.end(), is_flag_complex);
+}
+
+} // namespace skeleton_blocker
+
+namespace skbl = skeleton_blocker;
+
+} // namespace Gudhi
+
+#include "Skeleton_blocker_simplifiable_complex.h"
+
+#endif // SKELETON_BLOCKER_COMPLEX_H_