summaryrefslogtreecommitdiff
path: root/src/common/doc/main_page.md
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/doc/main_page.md')
-rw-r--r--src/common/doc/main_page.md306
1 files changed, 189 insertions, 117 deletions
diff --git a/src/common/doc/main_page.md b/src/common/doc/main_page.md
index d8cbf97f..9b7c2853 100644
--- a/src/common/doc/main_page.md
+++ b/src/common/doc/main_page.md
@@ -4,8 +4,8 @@
\image html "Gudhi_banner.png"
<br><br><br><br>
-## Complexes {#Complexes}
-### Cubical complex
+## Data structures for cell complexes {#Complexes}
+### Cubical complexes
<table>
<tr>
@@ -29,283 +29,300 @@
</tr>
</table>
-### Simplicial complex
-
-#### Alpha complex
+### Simplicial complexes
+#### Simplex tree
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "alpha_complex_representation.png"
+ \image html "Simplex_tree_representation.png"
</td>
<td width="50%">
- Alpha complex is a simplicial complex constructed from the finite cells of a Delaunay Triangulation.<br>
- The filtration value of each simplex is computed as the square of the circumradius of the simplex if the
- circumsphere is empty (the simplex is then said to be Gabriel), and as the minimum of the filtration
- values of the codimension 1 cofaces that make it not Gabriel otherwise.
- All simplices that have a filtration value strictly greater than a given alpha squared value are not inserted into
- the complex.<br>
+ The simplex tree is an efficient and flexible
+ data structure for representing general (filtered) simplicial complexes. The data structure
+ is described in \cite boissonnatmariasimplextreealgorithmica .
</td>
<td width="15%">
- <b>Author:</b> Vincent Rouvreau<br>
- <b>Introduced in:</b> GUDHI 1.3.0<br>
- <b>Copyright:</b> MIT [(GPL v3)](../../licensing/)<br>
- <b>Requires:</b> \ref eigen &ge; 3.1.0 and \ref cgal &ge; 4.11.0
+ <b>Author:</b> Cl&eacute;ment Maria<br>
+ <b>Introduced in:</b> GUDHI 1.0.0<br>
+ <b>Copyright:</b> MIT<br>
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref alpha_complex
+ <b>User manual:</b> \ref simplex_tree
</td>
</tr>
</table>
-#### Čech complex
+#### Toplex Map
<table>
- <tr>
+ <tr>
<td width="35%" rowspan=2>
- \image html "cech_complex_representation.png"
+ \image html "map.png"
</td>
<td width="50%">
- The Čech complex is a simplicial complex constructed from a proximity graph.
- The set of all simplices is filtered by the radius of their minimal enclosing ball.
+ The Toplex map data structure is composed firstly of a raw storage of toplices (the maximal simplices)
+ and secondly of a map which associate any vertex to a set of pointers toward all toplices
+ containing this vertex.
</td>
<td width="15%">
- <b>Author:</b> Vincent Rouvreau<br>
- <b>Introduced in:</b> GUDHI 2.2.0<br>
- <b>Copyright:</b> MIT [(GPL v3)](../../licensing/)<br>
- <b>Includes:</b> [Miniball](https://people.inf.ethz.ch/gaertner/subdir/software/miniball.html)<br>
+ <b>Author:</b> Fran&ccedil;ois Godi<br>
+ <b>Introduced in:</b> GUDHI 2.1.0<br>
+ <b>Copyright:</b> MIT<br>
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref cech_complex
+ <b>User manual:</b> \ref toplex_map
</td>
</tr>
</table>
-#### Rips complex
+#### Skeleton blocker
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "rips_complex_representation.png"
+ \image html "ds_representation.png"
</td>
<td width="50%">
- Rips complex is a simplicial complex constructed from a one skeleton graph.<br>
- The filtration value of each edge is computed from a user-given distance function and is inserted until a
- user-given threshold value.<br>
- This complex can be built from a point cloud and a distance function, or from a distance matrix.
+ The Skeleton-Blocker data-structure proposes a light encoding for simplicial complexes by storing only an *implicit*
+ representation of its simplices \cite socg_blockers_2011,\cite blockers2012. Intuitively, it just stores the
+ 1-skeleton of a simplicial complex with a graph and the set of its "missing faces" that is very small in practice.
+ This data-structure handles all simplicial complexes operations such as simplex enumeration or simplex removal but
+ operations that are particularly efficient are operations that do not require simplex enumeration such as edge
+ iteration, link computation or simplex contraction.
</td>
<td width="15%">
- <b>Author:</b> Cl&eacute;ment Maria, Pawel Dlotko, Vincent Rouvreau, Marc Glisse<br>
- <b>Introduced in:</b> GUDHI 2.0.0<br>
+ <b>Author:</b> David Salinas<br>
+ <b>Introduced in:</b> GUDHI 1.1.0<br>
<b>Copyright:</b> MIT<br>
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref rips_complex
+ <b>User manual:</b> \ref skbl
</td>
</tr>
</table>
-#### Witness complex
+#### Basic operation: contraction
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "Witness_complex_representation.png"
+ \image html "sphere_contraction_representation.png"
</td>
<td width="50%">
- Witness complex \f$ Wit(W,L) \f$ is a simplicial complex defined on two sets of points in \f$\mathbb{R}^D\f$.
- The data structure is described in \cite boissonnatmariasimplextreealgorithmica .
+ The purpose of this package is to offer a user-friendly interface for edge contraction simplification of huge
+ simplicial complexes. It uses the \ref skbl data-structure whose size remains small during simplification of most
+ used geometrical complexes of topological data analysis such as the Rips or the Delaunay complexes. In practice,
+ the size of this data-structure is even much lower than the total number of simplices.
</td>
<td width="15%">
- <b>Author:</b> Siargey Kachanovich<br>
- <b>Introduced in:</b> GUDHI 1.3.0<br>
- <b>Copyright:</b> MIT ([GPL v3](../../licensing/) for Euclidean version)<br>
- <b>Euclidean version requires:</b> \ref eigen &ge; 3.1.0 and \ref cgal &ge; 4.11.0
+ <b>Author:</b> David Salinas<br>
+ <b>Introduced in:</b> GUDHI 1.1.0<br>
+ <b>Copyright:</b> MIT [(LGPL v3)](../../licensing/)<br>
+ <b>Requires:</b> \ref cgal &ge; 4.11.0
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref witness_complex
+ <b>User manual:</b> \ref contr
</td>
</tr>
</table>
-### Cover Complexes
+## Filtrations
+### Alpha complex
+
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "gicvisu.jpg"
+ \image html "alpha_complex_representation.png"
</td>
<td width="50%">
- Nerves and Graph Induced Complexes are cover complexes, i.e. simplicial complexes that provably contain
- topological information about the input data. They can be computed with a cover of the
- data, that comes i.e. from the preimage of a family of intervals covering the image
- of a scalar-valued function defined on the data. <br>
+ Alpha complex is a simplicial complex constructed from the finite cells of a Delaunay Triangulation.<br>
+ The filtration value of each simplex is computed as the square of the circumradius of the simplex if the
+ circumsphere is empty (the simplex is then said to be Gabriel), and as the minimum of the filtration
+ values of the codimension 1 cofaces that make it not Gabriel otherwise.
+ All simplices that have a filtration value \f$ > \alpha^2 \f$ are removed from the Delaunay complex
+ when creating the simplicial complex if it is specified.<br>
+ For performances reasons, it is advised to use \ref cgal &ge; 5.0.0.
</td>
<td width="15%">
- <b>Author:</b> Mathieu Carri&egrave;re<br>
- <b>Introduced in:</b> GUDHI 2.1.0<br>
+ <b>Author:</b> Vincent Rouvreau<br>
+ <b>Introduced in:</b> GUDHI 1.3.0<br>
<b>Copyright:</b> MIT [(GPL v3)](../../licensing/)<br>
- <b>Requires:</b> \ref cgal &ge; 4.11.0
+ <b>Requires:</b> \ref eigen &ge; 3.1.0 and \ref cgal &ge; 4.11.0
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref cover_complex
+ <b>User manual:</b> \ref alpha_complex
</td>
</tr>
</table>
-## Data structures and basic operations {#DataStructuresAndBasicOperations}
-
-### Data structures
+### Čech complex
-#### Simplex tree
<table>
- <tr>
+ <tr>
<td width="35%" rowspan=2>
- \image html "Simplex_tree_representation.png"
+ \image html "cech_complex_representation.png"
</td>
<td width="50%">
- The simplex tree is an efficient and flexible
- data structure for representing general (filtered) simplicial complexes. The data structure
- is described in \cite boissonnatmariasimplextreealgorithmica .
+ The Čech complex is a simplicial complex constructed from a proximity graph.
+ The set of all simplices is filtered by the radius of their minimal enclosing ball.
</td>
<td width="15%">
- <b>Author:</b> Cl&eacute;ment Maria<br>
- <b>Introduced in:</b> GUDHI 1.0.0<br>
- <b>Copyright:</b> MIT<br>
+ <b>Author:</b> Vincent Rouvreau, Hind Montassif<br>
+ <b>Introduced in:</b> GUDHI 2.2.0<br>
+ <b>Copyright:</b> MIT [(LGPL v3)](../../licensing/)<br>
+ <b>Requires:</b> \ref cgal
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref simplex_tree
+ <b>User manual:</b> \ref cech_complex
</td>
</tr>
</table>
-#### Skeleton blocker
+### Rips complex
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "ds_representation.png"
+ \image html "rips_complex_representation.png"
</td>
<td width="50%">
- The Skeleton-Blocker data-structure proposes a light encoding for simplicial complexes by storing only an *implicit*
- representation of its simplices \cite socg_blockers_2011,\cite blockers2012. Intuitively, it just stores the
- 1-skeleton of a simplicial complex with a graph and the set of its "missing faces" that is very small in practice.
- This data-structure handles all simplicial complexes operations such as simplex enumeration or simplex removal but
- operations that are particularly efficient are operations that do not require simplex enumeration such as edge
- iteration, link computation or simplex contraction.
+ Rips complex is a simplicial complex constructed from a one skeleton graph.<br>
+ The filtration value of each edge is computed from a user-given distance function and is inserted until a
+ user-given threshold value.<br>
+ This complex can be built from a point cloud and a distance function, or from a distance matrix.
</td>
<td width="15%">
- <b>Author:</b> David Salinas<br>
- <b>Introduced in:</b> GUDHI 1.1.0<br>
+ <b>Author:</b> Cl&eacute;ment Maria, Pawel Dlotko, Vincent Rouvreau, Marc Glisse<br>
+ <b>Introduced in:</b> GUDHI 2.0.0<br>
<b>Copyright:</b> MIT<br>
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref skbl
+ <b>User manual:</b> \ref rips_complex
</td>
</tr>
</table>
-#### Toplex Map
+### Edge collapse
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "map.png"
+ \image html "dominated_edge.png"
</td>
<td width="50%">
- The Toplex map data structure is composed firstly of a raw storage of toplices (the maximal simplices)
- and secondly of a map which associate any vertex to a set of pointers toward all toplices
- containing this vertex.
+ Edge collapse is able to reduce any flag filtration to a smaller flag filtration with the same persistence, using
+ only the 1-skeletons of a simplicial complex.
+ The reduction is exact and the persistence homology of the reduced sequence is identical to the persistence
+ homology of the input sequence. The resulting method is simple and extremely efficient.
+
+ Computation of edge collapse and persistent homology of a filtered flag complex via edge collapse as described in
+ \cite edgecollapsearxiv.
</td>
<td width="15%">
- <b>Author:</b> Fran&ccedil;ois Godi<br>
- <b>Introduced in:</b> GUDHI 2.1.0<br>
- <b>Copyright:</b> MIT<br>
+ <b>Author:</b> Siddharth Pritam, Marc Glisse<br>
+ <b>Introduced in:</b> GUDHI 3.3.0<br>
+ <b>Copyright:</b> MIT
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref toplex_map
+ <b>User manual:</b> \ref edge_collapse
</td>
</tr>
</table>
-### Basic operations
+### Witness complex
-#### Contraction
+<table>
+ <tr>
+ <td width="35%" rowspan=2>
+ \image html "Witness_complex_representation.png"
+ </td>
+ <td width="50%">
+ Witness complex \f$ Wit(W,L) \f$ is a simplicial complex defined on two sets of points in \f$\mathbb{R}^D\f$.
+ The data structure is described in \cite boissonnatmariasimplextreealgorithmica .
+ </td>
+ <td width="15%">
+ <b>Author:</b> Siargey Kachanovich<br>
+ <b>Introduced in:</b> GUDHI 1.3.0<br>
+ <b>Copyright:</b> MIT ([GPL v3](../../licensing/) for Euclidean version)<br>
+ <b>Euclidean version requires:</b> \ref eigen &ge; 3.1.0 and \ref cgal &ge; 4.11.0
+ </td>
+ </tr>
+ <tr>
+ <td colspan=2 height="25">
+ <b>User manual:</b> \ref witness_complex
+ </td>
+ </tr>
+</table>
+### Cover Complexes
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "sphere_contraction_representation.png"
+ \image html "gicvisu.jpg"
</td>
<td width="50%">
- The purpose of this package is to offer a user-friendly interface for edge contraction simplification of huge
- simplicial complexes. It uses the \ref skbl data-structure whose size remains small during simplification of most
- used geometrical complexes of topological data analysis such as the Rips or the Delaunay complexes. In practice,
- the size of this data-structure is even much lower than the total number of simplices.
+ Nerves and Graph Induced Complexes are cover complexes, i.e. simplicial complexes that provably contain
+ topological information about the input data. They can be computed with a cover of the
+ data, that comes i.e. from the preimage of a family of intervals covering the image
+ of a scalar-valued function defined on the data. <br>
</td>
<td width="15%">
- <b>Author:</b> David Salinas<br>
- <b>Introduced in:</b> GUDHI 1.1.0<br>
- <b>Copyright:</b> MIT [(LGPL v3)](../../licensing/)<br>
+ <b>Author:</b> Mathieu Carri&egrave;re<br>
+ <b>Introduced in:</b> GUDHI 2.1.0<br>
+ <b>Copyright:</b> MIT [(GPL v3)](../../licensing/)<br>
<b>Requires:</b> \ref cgal &ge; 4.11.0
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref contr
+ <b>User manual:</b> \ref cover_complex
</td>
</tr>
</table>
-## Topological descriptors computation {#TopologicalDescriptorsComputation}
-
-### Persistent Cohomology
+## Manifold reconstructions
+### Coxeter triangulation
<table>
<tr>
<td width="35%" rowspan=2>
- \image html "3DTorus_poch.png"
+ \image html "manifold_tracing_on_custom_function_example.png"
</td>
<td width="50%">
- The theory of homology consists in attaching to a topological space a sequence of (homology) groups, capturing
- global topological features like connected components, holes, cavities, etc. Persistent homology studies the
- evolution -- birth, life and death -- of these features when the topological space is changing. Consequently, the
- theory is essentially composed of three elements: topological spaces, their homology groups and an evolution
- scheme.
- Computation of persistent cohomology using the algorithm of \cite DBLP:journals/dcg/SilvaMV11 and
- \cite DBLP:journals/corr/abs-1208-5018 and the Compressed Annotation Matrix implementation of
- \cite DBLP:conf/esa/BoissonnatDM13 .
+ Coxeter triangulation module is designed to provide tools for constructing a piecewise-linear approximation of an
+ \f$m\f$-dimensional smooth manifold embedded in \f$ \mathbb{R}^d \f$ using an ambient triangulation.
</td>
<td width="15%">
- <b>Author:</b> Cl&eacute;ment Maria<br>
- <b>Introduced in:</b> GUDHI 1.0.0<br>
- <b>Copyright:</b> MIT<br>
+ <b>Author:</b> Siargey Kachanovich<br>
+ <b>Introduced in:</b> GUDHI 3.4.0<br>
+ <b>Copyright:</b> MIT [(LGPL v3)](../../licensing/)<br>
+ <b>Requires:</b> \ref eigen &ge; 3.1.0
</td>
</tr>
<tr>
<td colspan=2 height="25">
- <b>User manual:</b> \ref persistent_cohomology
+ <b>User manual:</b> \ref coxeter_triangulation
</td>
</tr>
</table>
-## Manifold reconstruction {#ManifoldReconstruction}
-
### Tangential complex
<table>
@@ -334,6 +351,38 @@
</tr>
</table>
+## Topological descriptors computation {#TopologicalDescriptorsComputation}
+
+### Persistent Cohomology
+
+<table>
+ <tr>
+ <td width="35%" rowspan=2>
+ \image html "3DTorus_poch.png"
+ </td>
+ <td width="50%">
+ The theory of homology consists in attaching to a topological space a sequence of (homology) groups, capturing
+ global topological features like connected components, holes, cavities, etc. Persistent homology studies the
+ evolution -- birth, life and death -- of these features when the topological space is changing. Consequently, the
+ theory is essentially composed of three elements: topological spaces, their homology groups and an evolution
+ scheme.
+ Computation of persistent cohomology using the algorithm of \cite DBLP:journals/dcg/SilvaMV11 and
+ \cite DBLP:conf/compgeom/DeyFW14 and the Compressed Annotation Matrix implementation of
+ \cite DBLP:conf/esa/BoissonnatDM13 .
+ </td>
+ <td width="15%">
+ <b>Author:</b> Cl&eacute;ment Maria<br>
+ <b>Introduced in:</b> GUDHI 1.0.0<br>
+ <b>Copyright:</b> MIT<br>
+ </td>
+ </tr>
+ <tr>
+ <td colspan=2 height="25">
+ <b>User manual:</b> \ref persistent_cohomology
+ </td>
+ </tr>
+</table>
+
## Topological descriptors tools {#TopologicalDescriptorsTools}
### Bottleneck distance
@@ -389,3 +438,26 @@
</td>
</tr>
</table>
+
+## Point cloud utilities {#PointCloudUtils}
+
+<table>
+ <tr>
+ <td width="35%" rowspan=2>
+ \f$(x_1,\ldots,x_d)\f$
+ </td>
+ <td width="50%">
+ This contains various tools to handle point clouds: spatial searching, subsampling, etc.
+ </td>
+ <td width="15%">
+ <b>Author:</b> Clément Jamin<br>
+ <b>Introduced in:</b> GUDHI 1.3.0<br>
+ <b>Copyright:</b> MIT [(GPL v3)](../../licensing/)<br>
+ </td>
+ </tr>
+ <tr>
+ <td colspan=2 height="25">
+ <b>Manuals:</b> \ref spatial_searching, \ref subsampling
+ </td>
+ </tr>
+</table>