summaryrefslogtreecommitdiff
path: root/src/python/example/diagram_vectorizations_distances_kernels.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/python/example/diagram_vectorizations_distances_kernels.py')
-rwxr-xr-xsrc/python/example/diagram_vectorizations_distances_kernels.py98
1 files changed, 37 insertions, 61 deletions
diff --git a/src/python/example/diagram_vectorizations_distances_kernels.py b/src/python/example/diagram_vectorizations_distances_kernels.py
index 119072eb..c4a71a7a 100755
--- a/src/python/example/diagram_vectorizations_distances_kernels.py
+++ b/src/python/example/diagram_vectorizations_distances_kernels.py
@@ -9,26 +9,25 @@ from gudhi.representations import DiagramSelector, Clamping, Landscape, Silhouet
TopologicalVector, DiagramScaler, BirthPersistenceTransform,\
PersistenceImage, PersistenceWeightedGaussianKernel, Entropy, \
PersistenceScaleSpaceKernel, SlicedWassersteinDistance,\
- SlicedWassersteinKernel, BottleneckDistance, PersistenceFisherKernel
+ SlicedWassersteinKernel, BottleneckDistance, PersistenceFisherKernel, WassersteinDistance
-D = np.array([[0.,4.],[1.,2.],[3.,8.],[6.,8.], [0., np.inf], [5., np.inf]])
-diags = [D]
+D1 = np.array([[0.,4.],[1.,2.],[3.,8.],[6.,8.], [0., np.inf], [5., np.inf]])
-diags = DiagramSelector(use=True, point_type="finite").fit_transform(diags)
-diags = DiagramScaler(use=True, scalers=[([0,1], MinMaxScaler())]).fit_transform(diags)
-diags = DiagramScaler(use=True, scalers=[([1], Clamping(maximum=.9))]).fit_transform(diags)
+proc1 = DiagramSelector(use=True, point_type="finite")
+proc2 = DiagramScaler(use=True, scalers=[([0,1], MinMaxScaler())])
+proc3 = DiagramScaler(use=True, scalers=[([1], Clamping(maximum=.9))])
+D1 = proc3(proc2(proc1(D1)))
-D = diags[0]
-plt.scatter(D[:,0],D[:,1])
+plt.scatter(D1[:,0], D1[:,1])
plt.plot([0.,1.],[0.,1.])
plt.title("Test Persistence Diagram for vector methods")
plt.show()
LS = Landscape(resolution=1000)
-L = LS.fit_transform(diags)
-plt.plot(L[0][:1000])
-plt.plot(L[0][1000:2000])
-plt.plot(L[0][2000:3000])
+L = LS(D1)
+plt.plot(L[:1000])
+plt.plot(L[1000:2000])
+plt.plot(L[2000:3000])
plt.title("Landscape")
plt.show()
@@ -36,50 +35,39 @@ def pow(n):
return lambda x: np.power(x[1]-x[0],n)
SH = Silhouette(resolution=1000, weight=pow(2))
-sh = SH.fit_transform(diags)
-plt.plot(sh[0])
+plt.plot(SH(D1))
plt.title("Silhouette")
plt.show()
BC = BettiCurve(resolution=1000)
-bc = BC.fit_transform(diags)
-plt.plot(bc[0])
+plt.plot(BC(D1))
plt.title("Betti Curve")
plt.show()
CP = ComplexPolynomial(threshold=-1, polynomial_type="T")
-cp = CP.fit_transform(diags)
-print("Complex polynomial is " + str(cp[0,:]))
+print("Complex polynomial is " + str(CP(D1)))
TV = TopologicalVector(threshold=-1)
-tv = TV.fit_transform(diags)
-print("Topological vector is " + str(tv[0,:]))
+print("Topological vector is " + str(TV(D1)))
PI = PersistenceImage(bandwidth=.1, weight=lambda x: x[1], im_range=[0,1,0,1], resolution=[100,100])
-pi = PI.fit_transform(diags)
-plt.imshow(np.flip(np.reshape(pi[0], [100,100]), 0))
+plt.imshow(np.flip(np.reshape(PI(D1), [100,100]), 0))
plt.title("Persistence Image")
plt.show()
ET = Entropy(mode="scalar")
-et = ET.fit_transform(diags)
-print("Entropy statistic is " + str(et[0,:]))
+print("Entropy statistic is " + str(ET(D1)))
ET = Entropy(mode="vector", normalized=False)
-et = ET.fit_transform(diags)
-plt.plot(et[0])
+plt.plot(ET(D1))
plt.title("Entropy function")
plt.show()
-D = np.array([[1.,5.],[3.,6.],[2.,7.]])
-diags2 = [D]
+D2 = np.array([[1.,5.],[3.,6.],[2.,7.]])
+D2 = proc3(proc2(proc1(D2)))
-diags2 = DiagramScaler(use=True, scalers=[([0,1], MinMaxScaler())]).fit_transform(diags2)
-
-D = diags[0]
-plt.scatter(D[:,0],D[:,1])
-D = diags2[0]
-plt.scatter(D[:,0],D[:,1])
+plt.scatter(D1[:,0], D1[:,1])
+plt.scatter(D2[:,0], D2[:,1])
plt.plot([0.,1.],[0.,1.])
plt.title("Test Persistence Diagrams for kernel methods")
plt.show()
@@ -88,46 +76,34 @@ def arctan(C,p):
return lambda x: C*np.arctan(np.power(x[1], p))
PWG = PersistenceWeightedGaussianKernel(bandwidth=1., kernel_approx=None, weight=arctan(1.,1.))
-X = PWG.fit(diags)
-Y = PWG.transform(diags2)
-print("PWG kernel is " + str(Y[0][0]))
+print("PWG kernel is " + str(PWG(D1, D2)))
PWG = PersistenceWeightedGaussianKernel(kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])), weight=arctan(1.,1.))
-X = PWG.fit(diags)
-Y = PWG.transform(diags2)
-print("Approximate PWG kernel is " + str(Y[0][0]))
+print("Approximate PWG kernel is " + str(PWG(D1, D2)))
PSS = PersistenceScaleSpaceKernel(bandwidth=1.)
-X = PSS.fit(diags)
-Y = PSS.transform(diags2)
-print("PSS kernel is " + str(Y[0][0]))
+print("PSS kernel is " + str(PSS(D1, D2)))
PSS = PersistenceScaleSpaceKernel(kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])))
-X = PSS.fit(diags)
-Y = PSS.transform(diags2)
-print("Approximate PSS kernel is " + str(Y[0][0]))
+print("Approximate PSS kernel is " + str(PSS(D1, D2)))
sW = SlicedWassersteinDistance(num_directions=100)
-X = sW.fit(diags)
-Y = sW.transform(diags2)
-print("SW distance is " + str(Y[0][0]))
+print("SW distance is " + str(sW(D1, D2)))
SW = SlicedWassersteinKernel(num_directions=100, bandwidth=1.)
-X = SW.fit(diags)
-Y = SW.transform(diags2)
-print("SW kernel is " + str(Y[0][0]))
+print("SW kernel is " + str(SW(D1, D2)))
+
+W = WassersteinDistance(order=2, internal_p=2, mode="pot")
+print("Wasserstein distance (POT) is " + str(W(D1, D2)))
+
+W = WassersteinDistance(order=2, internal_p=2, mode="hera", delta=0.0001)
+print("Wasserstein distance (hera) is " + str(W(D1, D2)))
W = BottleneckDistance(epsilon=.001)
-X = W.fit(diags)
-Y = W.transform(diags2)
-print("Bottleneck distance is " + str(Y[0][0]))
+print("Bottleneck distance is " + str(W(D1, D2)))
PF = PersistenceFisherKernel(bandwidth_fisher=1., bandwidth=1.)
-X = PF.fit(diags)
-Y = PF.transform(diags2)
-print("PF kernel is " + str(Y[0][0]))
+print("PF kernel is " + str(PF(D1, D2)))
PF = PersistenceFisherKernel(bandwidth_fisher=1., bandwidth=1., kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])))
-X = PF.fit(diags)
-Y = PF.transform(diags2)
-print("Approximate PF kernel is " + str(Y[0][0]))
+print("Approximate PF kernel is " + str(PF(D1, D2)))