summaryrefslogtreecommitdiff
path: root/src/python/gudhi/wasserstein/wasserstein.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/python/gudhi/wasserstein/wasserstein.py')
-rw-r--r--src/python/gudhi/wasserstein/wasserstein.py230
1 files changed, 202 insertions, 28 deletions
diff --git a/src/python/gudhi/wasserstein/wasserstein.py b/src/python/gudhi/wasserstein/wasserstein.py
index 89ecab1c..dc18806e 100644
--- a/src/python/gudhi/wasserstein/wasserstein.py
+++ b/src/python/gudhi/wasserstein/wasserstein.py
@@ -9,6 +9,7 @@
import numpy as np
import scipy.spatial.distance as sc
+import warnings
try:
import ot
@@ -70,15 +71,19 @@ def _perstot_autodiff(X, order, internal_p):
'''
return _dist_to_diag(X, internal_p).norms.lp(order)
+
def _perstot(X, order, internal_p, enable_autodiff):
'''
:param X: (n x 2) numpy.array (points of a given diagram).
- :param order: exponent for Wasserstein. Default value is 2.
- :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2); Default value is 2 (Euclidean norm).
+ :param order: exponent for Wasserstein.
+ :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2).
:param enable_autodiff: If X is torch.tensor, tensorflow.Tensor or jax.numpy.ndarray, make the computation
transparent to automatic differentiation.
:type enable_autodiff: bool
:returns: float, the total persistence of the diagram (that is, its distance to the empty diagram).
+
+ .. note::
+ Can be +inf if the diagram has an essential part (points with infinite coordinates).
'''
if enable_autodiff:
import eagerpy as ep
@@ -88,32 +93,163 @@ def _perstot(X, order, internal_p, enable_autodiff):
return np.linalg.norm(_dist_to_diag(X, internal_p), ord=order)
-def wasserstein_distance(X, Y, matching=False, order=2., internal_p=2., enable_autodiff=False):
+def _get_essential_parts(a):
'''
- :param X: (n x 2) numpy.array encoding the (finite points of the) first diagram. Must not contain essential points
- (i.e. with infinite coordinate).
- :param Y: (m x 2) numpy.array encoding the second diagram.
- :param matching: if True, computes and returns the optimal matching between X and Y, encoded as
- a (n x 2) np.array [...[i,j]...], meaning the i-th point in X is matched to
- the j-th point in Y, with the convention (-1) represents the diagonal.
- :param order: exponent for Wasserstein; Default value is 2.
- :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2);
- Default value is 2 (Euclidean norm).
- :param enable_autodiff: If X and Y are torch.tensor, tensorflow.Tensor or jax.numpy.ndarray, make the computation
+ :param a: (n x 2) numpy.array (point of a diagram)
+ :returns: five lists of indices (between 0 and len(a)) accounting for the five types of points with infinite
+ coordinates that can occur in a diagram, namely:
+ type0 : (-inf, finite)
+ type1 : (finite, +inf)
+ type2 : (-inf, +inf)
+ type3 : (-inf, -inf)
+ type4 : (+inf, +inf)
+ .. note::
+ For instance, a[_get_essential_parts(a)[0]] returns the points in a of coordinates (-inf, x) for some finite x.
+ Note also that points with (+inf, -inf) are not handled (points (x,y) in dgm satisfy by assumption (y >= x)).
+
+ Finally, we consider that points with coordinates (-inf,-inf) and (+inf, +inf) belong to the diagonal.
+ '''
+ if len(a):
+ first_coord_finite = np.isfinite(a[:,0])
+ second_coord_finite = np.isfinite(a[:,1])
+ first_coord_infinite_positive = (a[:,0] == np.inf)
+ second_coord_infinite_positive = (a[:,1] == np.inf)
+ first_coord_infinite_negative = (a[:,0] == -np.inf)
+ second_coord_infinite_negative = (a[:,1] == -np.inf)
+
+ ess_first_type = np.where(second_coord_finite & first_coord_infinite_negative)[0] # coord (-inf, x)
+ ess_second_type = np.where(first_coord_finite & second_coord_infinite_positive)[0] # coord (x, +inf)
+ ess_third_type = np.where(first_coord_infinite_negative & second_coord_infinite_positive)[0] # coord (-inf, +inf)
+
+ ess_fourth_type = np.where(first_coord_infinite_negative & second_coord_infinite_negative)[0] # coord (-inf, -inf)
+ ess_fifth_type = np.where(first_coord_infinite_positive & second_coord_infinite_positive)[0] # coord (+inf, +inf)
+ return ess_first_type, ess_second_type, ess_third_type, ess_fourth_type, ess_fifth_type
+ else:
+ return [], [], [], [], []
+
+
+def _cost_and_match_essential_parts(X, Y, idX, idY, order, axis):
+ '''
+ :param X: (n x 2) numpy.array (dgm points)
+ :param Y: (n x 2) numpy.array (dgm points)
+ :param idX: indices to consider for this one dimensional OT problem (in X)
+ :param idY: indices to consider for this one dimensional OT problem (in Y)
+ :param order: exponent for Wasserstein distance computation
+ :param axis: must be 0 or 1, correspond to the coordinate which is finite.
+ :returns: cost (float) and match for points with *one* infinite coordinate.
+
+ .. note::
+ Assume idX, idY come when calling _handle_essential_parts, thus have same length.
+ '''
+ u = X[idX, axis]
+ v = Y[idY, axis]
+
+ cost = np.sum(np.abs(np.sort(u) - np.sort(v))**(order)) # OT cost in 1D
+
+ sortidX = idX[np.argsort(u)]
+ sortidY = idY[np.argsort(v)]
+ # We return [i,j] sorted per value
+ match = list(zip(sortidX, sortidY))
+
+ return cost, match
+
+
+def _handle_essential_parts(X, Y, order):
+ '''
+ :param X: (n x 2) numpy array, first diagram.
+ :param Y: (n x 2) numpy array, second diagram.
+ :order: Wasserstein order for cost computation.
+ :returns: cost and matching due to essential parts. If cost is +inf, matching will be set to None.
+ '''
+ ess_parts_X = _get_essential_parts(X)
+ ess_parts_Y = _get_essential_parts(Y)
+
+ # Treats the case of infinite cost (cardinalities of essential parts differ).
+ for u, v in list(zip(ess_parts_X, ess_parts_Y))[:3]: # ignore types 4 and 5 as they belong to the diagonal
+ if len(u) != len(v):
+ return np.inf, None
+
+ # Now we know each essential part has the same number of points in both diagrams.
+ # Handle type 0 and type 1 essential parts (those with one finite coordinates)
+ c1, m1 = _cost_and_match_essential_parts(X, Y, ess_parts_X[0], ess_parts_Y[0], axis=1, order=order)
+ c2, m2 = _cost_and_match_essential_parts(X, Y, ess_parts_X[1], ess_parts_Y[1], axis=0, order=order)
+
+ c = c1 + c2
+ m = m1 + m2
+
+ # Handle type3 (coordinates (-inf,+inf), so we just align points)
+ m += list(zip(ess_parts_X[2], ess_parts_Y[2]))
+
+ # Handle type 4 and 5, considered as belonging to the diagonal so matched to (-1) with cost 0.
+ for z in ess_parts_X[3:]:
+ m += [(u, -1) for u in z] # points in X are matched to -1
+ for z in ess_parts_Y[3:]:
+ m += [(-1, v) for v in z] # -1 is match to points in Y
+
+ return c, np.array(m)
+
+
+def _finite_part(X):
+ '''
+ :param X: (n x 2) numpy array encoding a persistence diagram.
+ :returns: The finite part of a diagram `X` (points with finite coordinates).
+ '''
+ return X[np.where(np.isfinite(X[:,0]) & np.isfinite(X[:,1]))]
+
+
+def _warn_infty(matching):
+ '''
+ Handle essential parts with different cardinalities. Warn the user about cost being infinite and (if
+ `matching=True`) about the returned matching being `None`.
+ '''
+ if matching:
+ warnings.warn('Cardinality of essential parts differs. Distance (cost) is +inf, and the returned matching is None.')
+ return np.inf, None
+ else:
+ warnings.warn('Cardinality of essential parts differs. Distance (cost) is +inf.')
+ return np.inf
+
+
+def wasserstein_distance(X, Y, matching=False, order=1., internal_p=np.inf, enable_autodiff=False,
+ keep_essential_parts=True):
+ '''
+ Compute the Wasserstein distance between persistence diagram using Python Optimal Transport backend.
+ Diagrams can contain points with infinity coordinates (essential parts).
+ Points with (-inf,-inf) and (+inf,+inf) coordinates are considered as belonging to the diagonal.
+ If the distance between two diagrams is +inf (which happens if the cardinalities of essential
+ parts differ) and optimal matching is required, it will be set to ``None``.
+
+ :param X: The first diagram.
+ :type X: n x 2 numpy.array
+ :param Y: The second diagram.
+ :type Y: m x 2 numpy.array
+ :param matching: if ``True``, computes and returns the optimal matching between X and Y, encoded as
+ a (n x 2) np.array [...[i,j]...], meaning the i-th point in X is matched to
+ the j-th point in Y, with the convention that (-1) represents the diagonal.
+ :param order: Wasserstein exponent q (1 <= q < infinity).
+ :type order: float
+ :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2).
+ :type internal_p: float
+ :param enable_autodiff: If X and Y are ``torch.tensor`` or ``tensorflow.Tensor``, make the computation
transparent to automatic differentiation. This requires the package EagerPy and is currently incompatible
- with `matching=True`.
+ with ``matching=True`` and with ``keep_essential_parts=True``.
- .. note:: This considers the function defined on the coordinates of the off-diagonal points of X and Y
+ .. note:: This considers the function defined on the coordinates of the off-diagonal finite points of X and Y
and lets the various frameworks compute its gradient. It never pulls new points from the diagonal.
:type enable_autodiff: bool
- :returns: the Wasserstein distance of order q (1 <= q < infinity) between persistence diagrams with
+ :param keep_essential_parts: If ``False``, only considers the finite points in the diagrams.
+ Otherwise, include essential parts in cost and matching computation.
+ :type keep_essential_parts: bool
+ :returns: The Wasserstein distance of order q (1 <= q < infinity) between persistence diagrams with
respect to the internal_p-norm as ground metric.
If matching is set to True, also returns the optimal matching between X and Y.
+ If cost is +inf, any matching is optimal and thus it returns `None` instead.
'''
+
+ # First step: handle empty diagrams
n = len(X)
m = len(Y)
- # handle empty diagrams
if n == 0:
if m == 0:
if not matching:
@@ -122,16 +258,45 @@ def wasserstein_distance(X, Y, matching=False, order=2., internal_p=2., enable_a
else:
return 0., np.array([])
else:
- if not matching:
- return _perstot(Y, order, internal_p, enable_autodiff)
+ cost = _perstot(Y, order, internal_p, enable_autodiff)
+ if cost == np.inf:
+ return _warn_infty(matching)
else:
- return _perstot(Y, order, internal_p, enable_autodiff), np.array([[-1, j] for j in range(m)])
+ if not matching:
+ return cost
+ else:
+ return cost, np.array([[-1, j] for j in range(m)])
elif m == 0:
- if not matching:
- return _perstot(X, order, internal_p, enable_autodiff)
+ cost = _perstot(X, order, internal_p, enable_autodiff)
+ if cost == np.inf:
+ return _warn_infty(matching)
else:
- return _perstot(X, order, internal_p, enable_autodiff), np.array([[i, -1] for i in range(n)])
+ if not matching:
+ return cost
+ else:
+ return cost, np.array([[i, -1] for i in range(n)])
+
+
+ # Check essential part and enable autodiff together
+ if enable_autodiff and keep_essential_parts:
+ warnings.warn('''enable_autodiff=True and keep_essential_parts=True are incompatible together.
+ keep_essential_parts is set to False: only points with finite coordinates are considered
+ in the following.
+ ''')
+ keep_essential_parts = False
+ # Second step: handle essential parts if needed.
+ if keep_essential_parts:
+ essential_cost, essential_matching = _handle_essential_parts(X, Y, order=order)
+ if (essential_cost == np.inf):
+ return _warn_infty(matching) # Tells the user that cost is infty and matching (if True) is None.
+ # avoid computing transport cost between the finite parts if essential parts
+ # cardinalities do not match (saves time)
+ else:
+ essential_cost = 0
+ essential_matching = None
+
+ # Now the standard pipeline for finite parts
if enable_autodiff:
import eagerpy as ep
@@ -139,6 +304,12 @@ def wasserstein_distance(X, Y, matching=False, order=2., internal_p=2., enable_a
Y_orig = ep.astensor(Y)
X = X_orig.numpy()
Y = Y_orig.numpy()
+
+ # Extract finite points of the diagrams.
+ X, Y = _finite_part(X), _finite_part(Y)
+ n = len(X)
+ m = len(Y)
+
M = _build_dist_matrix(X, Y, order=order, internal_p=internal_p)
a = np.ones(n+1) # weight vector of the input diagram. Uniform here.
a[-1] = m
@@ -154,7 +325,10 @@ def wasserstein_distance(X, Y, matching=False, order=2., internal_p=2., enable_a
# Now we turn to -1 points encoding the diagonal
match[:,0][match[:,0] >= n] = -1
match[:,1][match[:,1] >= m] = -1
- return ot_cost ** (1./order) , match
+ # Finally incorporate the essential part matching
+ if essential_matching is not None:
+ match = np.concatenate([match, essential_matching]) if essential_matching.size else match
+ return (ot_cost + essential_cost) ** (1./order) , match
if enable_autodiff:
P = ot.emd(a=a, b=b, M=M, numItermax=2000000)
@@ -165,17 +339,17 @@ def wasserstein_distance(X, Y, matching=False, order=2., internal_p=2., enable_a
# empty arrays are not handled properly by the helpers, so we avoid calling them
if len(pairs_X_Y):
dists.append((Y_orig[pairs_X_Y[:, 1]] - X_orig[pairs_X_Y[:, 0]]).norms.lp(internal_p, axis=-1).norms.lp(order))
- if len(pairs_X_diag):
+ if len(pairs_X_diag[0]):
dists.append(_perstot_autodiff(X_orig[pairs_X_diag], order, internal_p))
- if len(pairs_Y_diag):
+ if len(pairs_Y_diag[0]):
dists.append(_perstot_autodiff(Y_orig[pairs_Y_diag], order, internal_p))
dists = [dist.reshape(1) for dist in dists]
return ep.concatenate(dists).norms.lp(order).raw
# We can also concatenate the 3 vectors to compute just one norm.
- # Comptuation of the otcost using the ot.emd2 library.
+ # Comptuation of the ot cost using the ot.emd2 library.
# Note: it is the Wasserstein distance to the power q.
# The default numItermax=100000 is not sufficient for some examples with 5000 points, what is a good value?
ot_cost = ot.emd2(a, b, M, numItermax=2000000)
- return ot_cost ** (1./order)
+ return (ot_cost + essential_cost) ** (1./order)