/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2017 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include // infinity #include // for pair #include // for transform // Types definition using Simplex_tree = Gudhi::Simplex_tree; using Filtration_value = Simplex_tree::Filtration_value; using Rips_complex = Gudhi::rips_complex::Rips_complex; using Field_Zp = Gudhi::persistent_cohomology::Field_Zp; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; using Kernel = CGAL::Epick_d< CGAL::Dynamic_dimension_tag >; using Point_d = Kernel::Point_d; using Points_off_reader = Gudhi::Points_off_reader; void program_options(int argc, char * argv[] , std::string & off_file_points , Filtration_value & threshold , int & dim_max , int & p , Filtration_value & min_persistence); static inline std::pair compute_root_square(std::pair input) { return std::make_pair(std::sqrt(input.first), std::sqrt(input.second)); } int main(int argc, char * argv[]) { std::string off_file_points; Filtration_value threshold; int dim_max; int p; Filtration_value min_persistence; program_options(argc, argv, off_file_points, threshold, dim_max, p, min_persistence); Points_off_reader off_reader(off_file_points); // -------------------------------------------- // Rips persistence // -------------------------------------------- Rips_complex rips_complex(off_reader.get_point_cloud(), threshold, Gudhi::Euclidean_distance()); // Construct the Rips complex in a Simplex Tree Simplex_tree rips_stree; rips_complex.create_complex(rips_stree, dim_max); std::cout << "The Rips complex contains " << rips_stree.num_simplices() << " simplices and has dimension " << rips_stree.dimension() << " \n"; // Sort the simplices in the order of the filtration rips_stree.initialize_filtration(); // Compute the persistence diagram of the complex Persistent_cohomology rips_pcoh(rips_stree); // initializes the coefficient field for homology rips_pcoh.init_coefficients(p); rips_pcoh.compute_persistent_cohomology(min_persistence); // rips_pcoh.output_diagram(); // -------------------------------------------- // Alpha persistence // -------------------------------------------- Gudhi::alpha_complex::Alpha_complex alpha_complex(off_reader.get_point_cloud()); Simplex_tree alpha_stree; alpha_complex.create_complex(alpha_stree, threshold * threshold); std::cout << "The Alpha complex contains " << alpha_stree.num_simplices() << " simplices and has dimension " << alpha_stree.dimension() << " \n"; // Sort the simplices in the order of the filtration alpha_stree.initialize_filtration(); // Compute the persistence diagram of the complex Persistent_cohomology alpha_pcoh(alpha_stree); // initializes the coefficient field for homology alpha_pcoh.init_coefficients(p); alpha_pcoh.compute_persistent_cohomology(min_persistence * min_persistence); // alpha_pcoh.output_diagram(); // -------------------------------------------- // Bottleneck distance between both persistence // -------------------------------------------- double max_b_distance {}; for (int dim = 0; dim < dim_max; dim ++) { std::vector< std::pair< Filtration_value , Filtration_value > > rips_intervals; std::vector< std::pair< Filtration_value , Filtration_value > > alpha_intervals; rips_intervals = rips_pcoh.intervals_in_dimension(dim); alpha_intervals = alpha_pcoh.intervals_in_dimension(dim); std::transform(alpha_intervals.begin(), alpha_intervals.end(), alpha_intervals.begin(), compute_root_square); double bottleneck_distance = Gudhi::persistence_diagram::bottleneck_distance(rips_intervals, alpha_intervals); std::cout << "In dimension " << dim << ", bottleneck distance = " << bottleneck_distance << std::endl; if (bottleneck_distance > max_b_distance) max_b_distance = bottleneck_distance; } std::cout << "================================================================================" << std::endl; std::cout << "Bottleneck distance is " << max_b_distance << std::endl; return 0; } void program_options(int argc, char * argv[] , std::string & off_file_points , Filtration_value & threshold , int & dim_max , int & p , Filtration_value & min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options() ("input-file", po::value(&off_file_points), "Name of an OFF file containing a point set.\n"); po::options_description visible("Allowed options", 100); visible.add_options() ("help,h", "produce help message") ("max-edge-length,r", po::value(&threshold)->default_value(std::numeric_limits::infinity()), "Maximal length of an edge for the Rips complex construction.") ("cpx-dimension,d", po::value(&dim_max)->default_value(1), "Maximal dimension of the Rips complex we want to compute.") ("field-charac,p", po::value(&p)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.") ("min-persistence,m", po::value(&min_persistence), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals"); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv). options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Compute the persistent homology with coefficient field Z/pZ \n"; std::cout << "of a Rips complex defined on a set of input points.\n \n"; std::cout << "The output diagram contains one bar per line, written with the convention: \n"; std::cout << " p dim b d \n"; std::cout << "where dim is the dimension of the homological feature,\n"; std::cout << "b and d are respectively the birth and death of the feature and \n"; std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; exit(-1); } }