#include #include #include #include // to construct a simplex_tree from alpha complex #include #include #include #include // for numeric_limits using Simplex_tree = Gudhi::Simplex_tree<>; using Filtration_value = Simplex_tree::Filtration_value; void program_options(int argc, char * argv[] , std::string & off_file_points , std::string & output_file_diag , Filtration_value & alpha_square_max_value , int & coeff_field_characteristic , Filtration_value & min_persistence); int main(int argc, char **argv) { std::string off_file_points; std::string output_file_diag; Filtration_value alpha_square_max_value; int coeff_field_characteristic; Filtration_value min_persistence; program_options(argc, argv, off_file_points, output_file_diag, alpha_square_max_value, coeff_field_characteristic, min_persistence); // ---------------------------------------------------------------------------- // Init of an alpha complex from an OFF file // ---------------------------------------------------------------------------- using Kernel = CGAL::Epick_d< CGAL::Dynamic_dimension_tag >; Gudhi::alpha_complex::Alpha_complex alpha_complex_from_file(off_file_points); Simplex_tree simplex; if (alpha_complex_from_file.create_complex(simplex, alpha_square_max_value)) { // ---------------------------------------------------------------------------- // Display information about the alpha complex // ---------------------------------------------------------------------------- std::cout << "Simplicial complex is of dimension " << simplex.dimension() << " - " << simplex.num_simplices() << " simplices - " << simplex.num_vertices() << " vertices." << std::endl; // Sort the simplices in the order of the filtration simplex.initialize_filtration(); std::cout << "Simplex_tree dim: " << simplex.dimension() << std::endl; // Compute the persistence diagram of the complex Gudhi::persistent_cohomology::Persistent_cohomology< Simplex_tree, Gudhi::persistent_cohomology::Field_Zp > pcoh(simplex); // initializes the coefficient field for homology pcoh.init_coefficients(coeff_field_characteristic); pcoh.compute_persistent_cohomology(min_persistence); // Output the diagram in filediag if (output_file_diag.empty()) { pcoh.output_diagram(); } else { std::cout << "Result in file: " << output_file_diag << std::endl; std::ofstream out(output_file_diag); pcoh.output_diagram(out); out.close(); } } return 0; } void program_options(int argc, char * argv[] , std::string & off_file_points , std::string & output_file_diag , Filtration_value & alpha_square_max_value , int & coeff_field_characteristic , Filtration_value & min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options() ("input-file", po::value(&off_file_points), "Name of file containing a point set. Format is one point per line: X1 ... Xd "); po::options_description visible("Allowed options", 100); visible.add_options() ("help,h", "produce help message") ("output-file,o", po::value(&output_file_diag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::cout") ("max-alpha-square-value,r", po::value(&alpha_square_max_value)->default_value(std::numeric_limits::infinity()), "Maximal alpha square value for the Alpha complex construction.") ("field-charac,p", po::value(&coeff_field_characteristic)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.") ("min-persistence,m", po::value(&min_persistence), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals"); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv). options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Compute the persistent homology with coefficient field Z/pZ \n"; std::cout << "of an Alpha complex defined on a set of input points.\n \n"; std::cout << "The output diagram contains one bar per line, written with the convention: \n"; std::cout << " p dim b d \n"; std::cout << "where dim is the dimension of the homological feature,\n"; std::cout << "b and d are respectively the birth and death of the feature and \n"; std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; std::abort(); } }