/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2014 INRIA * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alpha_complex_3d_helper.h" // Traits using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel; using Gt = CGAL::Regular_triangulation_euclidean_traits_3; using Vb = CGAL::Alpha_shape_vertex_base_3; using Fb = CGAL::Alpha_shape_cell_base_3; using Tds = CGAL::Triangulation_data_structure_3; using Triangulation_3 = CGAL::Regular_triangulation_3; using Alpha_shape_3 = CGAL::Alpha_shape_3; // From file type definition using Point_3 = Gt::Bare_point; using Weighted_point_3 = Gt::Weighted_point; // filtration with alpha values needed type definition using Alpha_value_type = Alpha_shape_3::FT; using Object = CGAL::Object; using Dispatch = CGAL::Dispatch_output_iterator< CGAL::cpp11::tuple, CGAL::cpp11::tuple >, std::back_insert_iterator< std::vector > > >; using Cell_handle = Alpha_shape_3::Cell_handle; using Facet = Alpha_shape_3::Facet; using Edge_3 = Alpha_shape_3::Edge; using Vertex_handle = Alpha_shape_3::Vertex_handle; using Vertex_list = std::list; // gudhi type definition using ST = Gudhi::Simplex_tree; using Filtration_value = ST::Filtration_value; using Simplex_tree_vertex = ST::Vertex_handle; using Alpha_shape_simplex_tree_map = std::map; using Alpha_shape_simplex_tree_pair = std::pair; using Simplex_tree_vector_vertex = std::vector< Simplex_tree_vertex >; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology< ST, Gudhi::persistent_cohomology::Field_Zp >; void usage(char * const progName) { std::cerr << "Usage: " << progName << " path_to_file_graph path_to_weight_file coeff_field_characteristic[integer > 0] min_persistence[float >= -1.0]\n"; exit(-1); } int main(int argc, char * const argv[]) { // program args management if (argc != 5) { std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n"; usage(argv[0]); } int coeff_field_characteristic = atoi(argv[3]); Filtration_value min_persistence = strtof(argv[4], nullptr); // Read points from file std::string offInputFile(argv[1]); // Read the OFF file (input file name given as parameter) and triangulate points Gudhi::Points_3D_off_reader off_reader(offInputFile); // Check the read operation was correct if (!off_reader.is_valid()) { std::cerr << "Unable to read file " << offInputFile << std::endl; usage(argv[0]); } // Retrieve the triangulation std::vector lp = off_reader.get_point_cloud(); // Read weights information from file std::ifstream weights_ifstr(argv[2]); std::vector wp; if (weights_ifstr.good()) { double weight = 0.0; std::size_t index = 0; // Attempt read the weight in a double format, return false if it fails while ((weights_ifstr >> weight) && (index < lp.size())) { wp.push_back(Weighted_point_3(lp[index], weight)); index++; } if (index != lp.size()) { std::cerr << "Bad number of weights in file " << argv[2] << std::endl; usage(argv[0]); } } else { std::cerr << "Unable to read file " << argv[2] << std::endl; usage(argv[0]); } // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. Alpha_shape_3 as(lp.begin(), lp.end(), 0, Alpha_shape_3::GENERAL); #ifdef DEBUG_TRACES std::cout << "Alpha shape computed in GENERAL mode" << std::endl; #endif // DEBUG_TRACES // filtration with alpha values from alpha shape std::vector the_objects; std::vector the_alpha_values; Dispatch disp = CGAL::dispatch_output(std::back_inserter(the_objects), std::back_inserter(the_alpha_values)); as.filtration_with_alpha_values(disp); #ifdef DEBUG_TRACES std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl; #endif // DEBUG_TRACES Alpha_shape_3::size_type count_vertices = 0; Alpha_shape_3::size_type count_edges = 0; Alpha_shape_3::size_type count_facets = 0; Alpha_shape_3::size_type count_cells = 0; // Loop on objects vector Vertex_list vertex_list; ST simplex_tree; Alpha_shape_simplex_tree_map map_cgal_simplex_tree; std::vector::iterator the_alpha_value_iterator = the_alpha_values.begin(); int dim_max = 0; Filtration_value filtration_max = 0.0; for (auto object_iterator : the_objects) { // Retrieve Alpha shape vertex list from object if (const Cell_handle * cell = CGAL::object_cast(&object_iterator)) { vertex_list = from_cell(*cell); count_cells++; if (dim_max < 3) { // Cell is of dim 3 dim_max = 3; } } else if (const Facet * facet = CGAL::object_cast(&object_iterator)) { vertex_list = from_facet(*facet); count_facets++; if (dim_max < 2) { // Facet is of dim 2 dim_max = 2; } } else if (const Edge_3 * edge = CGAL::object_cast(&object_iterator)) { vertex_list = from_edge(*edge); count_edges++; if (dim_max < 1) { // Edge_3 is of dim 1 dim_max = 1; } } else if (const Alpha_shape_3::Vertex_handle * vertex = CGAL::object_cast(&object_iterator)) { count_vertices++; vertex_list = from_vertex(*vertex); } // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex Simplex_tree_vector_vertex the_simplex_tree; for (auto the_alpha_shape_vertex : vertex_list) { Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex); if (the_map_iterator == map_cgal_simplex_tree.end()) { // alpha shape not found Simplex_tree_vertex vertex = map_cgal_simplex_tree.size(); #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex_tree.push_back(vertex); map_cgal_simplex_tree.insert(Alpha_shape_simplex_tree_pair(the_alpha_shape_vertex, vertex)); } else { // alpha shape found Simplex_tree_vertex vertex = the_map_iterator->second; #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex_tree.push_back(vertex); } } // Construction of the simplex_tree Filtration_value filtr = /*std::sqrt*/(*the_alpha_value_iterator); #ifdef DEBUG_TRACES std::cout << "filtration = " << filtr << std::endl; #endif // DEBUG_TRACES if (filtr > filtration_max) { filtration_max = filtr; } simplex_tree.insert_simplex(the_simplex_tree, filtr); if (the_alpha_value_iterator != the_alpha_values.end()) ++the_alpha_value_iterator; else std::cout << "This shall not happen" << std::endl; } simplex_tree.set_filtration(filtration_max); simplex_tree.set_dimension(dim_max); #ifdef DEBUG_TRACES std::cout << "vertices \t\t" << count_vertices << std::endl; std::cout << "edges \t\t" << count_edges << std::endl; std::cout << "facets \t\t" << count_facets << std::endl; std::cout << "cells \t\t" << count_cells << std::endl; std::cout << "Information of the Simplex Tree: " << std::endl; std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " "; std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl; std::cout << " Dimension = " << simplex_tree.dimension() << " "; std::cout << " filtration = " << simplex_tree.filtration() << std::endl << std::endl; #endif // DEBUG_TRACES #ifdef DEBUG_TRACES std::cout << "Iterator on vertices: " << std::endl; for (auto vertex : simplex_tree.complex_vertex_range()) { std::cout << vertex << " "; } #endif // DEBUG_TRACES // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl; // Compute the persistence diagram of the complex Persistent_cohomology pcoh(simplex_tree, true); // initializes the coefficient field for homology pcoh.init_coefficients(coeff_field_characteristic); pcoh.compute_persistent_cohomology(min_persistence); pcoh.output_diagram(); return 0; }