/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2017 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include // infinity #include // for pair #include // ------------------------------------------------------------------------------- // cech_complex_cgal_mini_sphere_3d is an example of each step that is required to // build a Cech over a Simplex_tree. Please refer to cech_persistence to see // how to do the same thing with the Cech_complex wrapper for less detailed // steps. // ------------------------------------------------------------------------------- // Types definition using Simplex_tree = Gudhi::Simplex_tree<>; using Vertex_handle = Simplex_tree::Vertex_handle; using Simplex_handle = Simplex_tree::Simplex_handle; using Filtration_value = Simplex_tree::Filtration_value; using Siblings = Simplex_tree::Siblings; using Graph_t = boost::adjacency_list, boost::property >; using Edge_t = std::pair; using Kernel = CGAL::Epick_d >; using Point = Kernel::Point_d; using Traits = CGAL::Min_sphere_of_points_d_traits_d; using Min_sphere = CGAL::Min_sphere_of_spheres_d; using Points_off_reader = Gudhi::Points_off_reader; class Cech_blocker { public: bool operator()(Simplex_handle sh) { std::vector points; #if DEBUG_TRACES std::cout << "Cech_blocker on ["; #endif // DEBUG_TRACES for (auto vertex : simplex_tree_.simplex_vertex_range(sh)) { points.push_back(point_cloud_[vertex]); #if DEBUG_TRACES std::cout << vertex << ", "; #endif // DEBUG_TRACES } Min_sphere ms(points.begin(), points.end()); Filtration_value radius = ms.radius(); #if DEBUG_TRACES std::cout << "] - radius = " << radius << " - returns " << (radius > threshold_) << std::endl; #endif // DEBUG_TRACES simplex_tree_.assign_filtration(sh, radius); return (radius > threshold_); } Cech_blocker(Simplex_tree& simplex_tree, Filtration_value threshold, const std::vector& point_cloud) : simplex_tree_(simplex_tree), threshold_(threshold), point_cloud_(point_cloud) {} private: Simplex_tree simplex_tree_; Filtration_value threshold_; std::vector point_cloud_; }; template Graph_t compute_proximity_graph(InputPointRange& points, Filtration_value threshold); void program_options(int argc, char* argv[], std::string& off_file_points, Filtration_value& threshold, int& dim_max); int main(int argc, char* argv[]) { std::string off_file_points; Filtration_value threshold; int dim_max; program_options(argc, argv, off_file_points, threshold, dim_max); // Extract the points from the file filepoints Points_off_reader off_reader(off_file_points); // Compute the proximity graph of the points Graph_t prox_graph = compute_proximity_graph(off_reader.get_point_cloud(), threshold); // Min_sphere sph1(off_reader.get_point_cloud()[0], off_reader.get_point_cloud()[1], off_reader.get_point_cloud()[2]); // Construct the Rips complex in a Simplex Tree Simplex_tree st; // insert the proximity graph in the simplex tree st.insert_graph(prox_graph); // expand the graph until dimension dim_max st.expansion_with_blockers(dim_max, Cech_blocker(st, threshold, off_reader.get_point_cloud())); std::cout << "The complex contains " << st.num_simplices() << " simplices \n"; std::cout << " and has dimension " << st.dimension() << " \n"; // Sort the simplices in the order of the filtration st.initialize_filtration(); #if DEBUG_TRACES std::cout << "********************************************************************\n"; // Display the Simplex_tree - Can not be done in the middle of 2 inserts std::cout << "* The complex contains " << st.num_simplices() << " simplices - dimension=" << st.dimension() << "\n"; std::cout << "* Iterator on Simplices in the filtration, with [filtration value]:\n"; for (auto f_simplex : st.filtration_simplex_range()) { std::cout << " " << "[" << st.filtration(f_simplex) << "] "; for (auto vertex : st.simplex_vertex_range(f_simplex)) { std::cout << static_cast(vertex) << " "; } std::cout << std::endl; } #endif // DEBUG_TRACES return 0; } void program_options(int argc, char* argv[], std::string& off_file_points, Filtration_value& threshold, int& dim_max) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()("input-file", po::value(&off_file_points), "Name of an OFF file containing a 3d point set.\n"); po::options_description visible("Allowed options", 100); visible.add_options()("help,h", "produce help message")( "max-edge-length,r", po::value(&threshold)->default_value(std::numeric_limits::infinity()), "Maximal length of an edge for the Cech complex construction.")( "cpx-dimension,d", po::value(&dim_max)->default_value(1), "Maximal dimension of the Cech complex we want to compute."); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Construct a Cech complex defined on a set of input points.\n \n"; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; std::abort(); } } /** Output the proximity graph of the points. * * If points contains n elements, the proximity graph is the graph * with n vertices, and an edge [u,v] iff the distance function between * points u and v is smaller than threshold. * * The type PointCloud furnishes .begin() and .end() methods, that return * iterators with value_type Point. */ template Graph_t compute_proximity_graph(InputPointRange& points, Filtration_value threshold) { std::vector edges; std::vector edges_fil; Kernel k; Vertex_handle idx_u, idx_v; Filtration_value fil; idx_u = 0; for (auto it_u = points.begin(); it_u != points.end(); ++it_u) { idx_v = idx_u + 1; for (auto it_v = it_u + 1; it_v != points.end(); ++it_v, ++idx_v) { fil = k.squared_distance_d_object()(*it_u, *it_v); // For Cech Complex, threshold is a radius (distance /2) fil = std::sqrt(fil) / 2.; if (fil <= threshold) { edges.emplace_back(idx_u, idx_v); edges_fil.push_back(fil); } } ++idx_u; } Graph_t skel_graph(edges.begin(), edges.end(), edges_fil.begin(), idx_u); // number of points labeled from 0 to idx_u-1 auto vertex_prop = boost::get(Gudhi::vertex_filtration_t(), skel_graph); boost::graph_traits::vertex_iterator vi, vi_end; for (std::tie(vi, vi_end) = boost::vertices(skel_graph); vi != vi_end; ++vi) { boost::put(vertex_prop, *vi, 0.); } return skel_graph; }