/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author: Francois Godi * * Copyright (C) 2015 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef GRAPH_MATCHING_H_ #define GRAPH_MATCHING_H_ #include #include #include #include namespace Gudhi { namespace persistence_diagram { /** \internal \brief Structure representing a graph matching. The graph is a Persistence_diagrams_graph. * * \ingroup bottleneck_distance */ class Graph_matching { public: /** \internal \brief Constructor constructing an empty matching. */ explicit Graph_matching(Persistence_graph &g); /** \internal \brief Is the matching perfect ? */ bool perfect() const; /** \internal \brief Augments the matching with a maximal set of edge-disjoint shortest augmenting paths. */ bool multi_augment(); /** \internal \brief Sets the maximum length of the edges allowed to be added in the matching, 0 initially. */ void set_r(double r); private: Persistence_graph* gp; double r; /** \internal \brief Given a point from V, provides its matched point in U, null_point_index() if there isn't. */ std::vector v_to_u; /** \internal \brief All the unmatched points in U. */ std::unordered_set unmatched_in_u; /** \internal \brief Provides a Layered_neighbors_finder dividing the graph in layers. Basically a BFS. */ Layered_neighbors_finder layering() const; /** \internal \brief Augments the matching with a simple path no longer than max_depth. Basically a DFS. */ bool augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth); /** \internal \brief Update the matching with the simple augmenting path given as parameter. */ void update(std::vector & path); }; inline Graph_matching::Graph_matching(Persistence_graph& g) : gp(&g), r(0.), v_to_u(g.size(), null_point_index()), unmatched_in_u(g.size()) { for (int u_point_index = 0; u_point_index < g.size(); ++u_point_index) unmatched_in_u.insert(u_point_index); } inline bool Graph_matching::perfect() const { return unmatched_in_u.empty(); } inline bool Graph_matching::multi_augment() { if (perfect()) return false; Layered_neighbors_finder layered_nf(layering()); int max_depth = layered_nf.vlayers_number()*2 - 1; double rn = sqrt(gp->size()); // verification of a necessary criterion in order to shortcut if possible if (max_depth < 0 || (unmatched_in_u.size() > rn && max_depth >= rn)) return false; bool successful = false; std::vector tries(unmatched_in_u.cbegin(), unmatched_in_u.cend()); for (auto it = tries.cbegin(); it != tries.cend(); it++) // 'augment' has side-effects which have to be always executed, don't change order successful = augment(layered_nf, *it, max_depth) || successful; return successful; } inline void Graph_matching::set_r(double r) { this->r = r; } inline bool Graph_matching::augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth) { // V vertices have at most one successor, thus when we backtrack from U we can directly pop_back 2 vertices. std::vector path; path.emplace_back(u_start_index); do { if (static_cast (path.size()) > max_depth) { path.pop_back(); path.pop_back(); } if (path.empty()) return false; path.emplace_back(layered_nf.pull_near(path.back(), static_cast (path.size()) / 2)); while (path.back() == null_point_index()) { path.pop_back(); path.pop_back(); if (path.empty()) return false; path.pop_back(); path.emplace_back(layered_nf.pull_near(path.back(), path.size() / 2)); } path.emplace_back(v_to_u.at(path.back())); } while (path.back() != null_point_index()); // if v_to_u.at(path.back()) has no successor, path.back() is an exposed vertex path.pop_back(); update(path); return true; } inline Layered_neighbors_finder Graph_matching::layering() const { std::vector u_vertices(unmatched_in_u.cbegin(), unmatched_in_u.cend()); std::vector v_vertices; Neighbors_finder nf(*gp, r); for (int v_point_index = 0; v_point_index < gp->size(); ++v_point_index) nf.add(v_point_index); Layered_neighbors_finder layered_nf(*gp, r); for (int layer = 0; !u_vertices.empty(); layer++) { // one layer is one step in the BFS for (auto it1 = u_vertices.cbegin(); it1 != u_vertices.cend(); ++it1) { std::vector u_succ(nf.pull_all_near(*it1)); for (auto it2 = u_succ.begin(); it2 != u_succ.end(); ++it2) { layered_nf.add(*it2, layer); v_vertices.emplace_back(*it2); } } // When the above for finishes, we have progress of one half-step (from U to V) in the BFS u_vertices.clear(); bool end = false; for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++) if (v_to_u.at(*it) == null_point_index()) // we stop when a nearest exposed V vertex (from U exposed vertices) has been found end = true; else u_vertices.emplace_back(v_to_u.at(*it)); // When the above for finishes, we have progress of one half-step (from V to U) in the BFS if (end) return layered_nf; v_vertices.clear(); } return layered_nf; } inline void Graph_matching::update(std::vector& path) { // Must return 1. unmatched_in_u.erase(path.front()); for (auto it = path.cbegin(); it != path.cend(); ++it) { // Be careful, the iterator is incremented twice each time int tmp = *it; v_to_u[*(++it)] = tmp; } } } // namespace persistence_diagram } // namespace Gudhi #endif // GRAPH_MATCHING_H_