/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2015 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef WITNESS_COMPLEX_H_ #define WITNESS_COMPLEX_H_ #include #include #include #include #include #include namespace Gudhi { namespace witness_complex { /** * \private * \class Witness_complex * \brief Constructs (weak) witness complex for a given table of nearest landmarks with respect to witnesses. * \ingroup witness_complex * * \tparam Nearest_landmark_table_ needs to be a range of a range of pairs of nearest landmarks and distances. * The class Nearest_landmark_table_::value_type must be a copiable range. * The range of pairs must admit a member type 'iterator'. The dereference type * of the pair range iterator needs to be 'std::pair'. */ template< class Nearest_landmark_table_ > class Witness_complex { private: typedef typename Nearest_landmark_table_::value_type Nearest_landmark_range; typedef std::size_t Witness_id; typedef std::size_t Landmark_id; typedef std::pair Id_distance_pair; typedef Active_witness ActiveWitness; typedef std::list< ActiveWitness > ActiveWitnessList; typedef std::vector< Landmark_id > typeVectorVertex; typedef std::vector Nearest_landmark_table_internal; typedef Landmark_id Vertex_handle; protected: Nearest_landmark_table_internal nearest_landmark_table_; public: ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* @name Constructor */ //@{ Witness_complex() { } /** * \brief Initializes member variables before constructing simplicial complex. * \details Records nearest landmark table. * @param[in] nearest_landmark_table needs to be a range of a range of pairs of nearest landmarks and distances. * The class Nearest_landmark_table_::value_type must be a copiable range. * The range of pairs must admit a member type 'iterator'. The dereference type * of the pair range iterator needs to be 'std::pair'. */ Witness_complex(Nearest_landmark_table_ const & nearest_landmark_table) : nearest_landmark_table_(std::begin(nearest_landmark_table), std::end(nearest_landmark_table)) { } /** \brief Outputs the (weak) witness complex of relaxation 'max_alpha_square' * in a simplicial complex data structure. * \details The function returns true if the construction is successful and false otherwise. * @param[out] complex Simplicial complex data structure compatible which is a model of * SimplicialComplexForWitness concept. * @param[in] max_alpha_square Maximal squared relaxation parameter. * @param[in] limit_dimension Represents the maximal dimension of the simplicial complex * (default value = no limit). */ template < typename SimplicialComplexForWitness > bool create_complex(SimplicialComplexForWitness& complex, double max_alpha_square, std::size_t limit_dimension = std::numeric_limits::max()) const { if (complex.num_vertices() > 0) { std::cerr << "Witness complex cannot create complex - complex is not empty.\n"; return false; } if (max_alpha_square < 0) { std::cerr << "Witness complex cannot create complex - squared relaxation parameter must be non-negative.\n"; return false; } ActiveWitnessList active_witnesses; Landmark_id k = 0; /* current dimension in iterative construction */ for (auto w : nearest_landmark_table_) active_witnesses.push_back(ActiveWitness(w)); while (!active_witnesses.empty() && k <= limit_dimension) { typename ActiveWitnessList::iterator aw_it = active_witnesses.begin(); std::vector simplex; simplex.reserve(k+1); while (aw_it != active_witnesses.end()) { bool ok = add_all_faces_of_dimension(k, max_alpha_square, std::numeric_limits::infinity(), aw_it->begin(), simplex, complex, aw_it->end()); assert(simplex.empty()); if (!ok) active_witnesses.erase(aw_it++); // First increase the iterator and then erase the previous element else aw_it++; } k++; } return true; } //@} private: /* \brief Adds recursively all the faces of a certain dimension dim witnessed by the same witness. * Iterator is needed to know until how far we can take landmarks to form simplexes. * simplex is the prefix of the simplexes to insert. * The output value indicates if the witness rests active or not. */ template < typename SimplicialComplexForWitness > bool add_all_faces_of_dimension(int dim, double alpha2, double norelax_dist2, typename ActiveWitness::iterator curr_l, std::vector& simplex, SimplicialComplexForWitness& sc, typename ActiveWitness::iterator end) const { if (curr_l == end) return false; bool will_be_active = false; typename ActiveWitness::iterator l_it = curr_l; if (dim > 0) { for (; l_it != end && l_it->second - alpha2 <= norelax_dist2; ++l_it) { simplex.push_back(l_it->first); if (sc.find(simplex) != sc.null_simplex()) { typename ActiveWitness::iterator next_it = l_it; will_be_active = add_all_faces_of_dimension(dim-1, alpha2, norelax_dist2, ++next_it, simplex, sc, end) || will_be_active; } assert(!simplex.empty()); simplex.pop_back(); // If norelax_dist is infinity, change to first omitted distance if (l_it->second <= norelax_dist2) norelax_dist2 = l_it->second; } } else if (dim == 0) { for (; l_it != end && l_it->second - alpha2 <= norelax_dist2; ++l_it) { simplex.push_back(l_it->first); double filtration_value = 0; // if norelax_dist is infinite, relaxation is 0. if (l_it->second > norelax_dist2) filtration_value = l_it->second - norelax_dist2; if (all_faces_in(simplex, &filtration_value, sc)) { will_be_active = true; sc.insert_simplex(simplex, filtration_value); } assert(!simplex.empty()); simplex.pop_back(); // If norelax_dist is infinity, change to first omitted distance if (l_it->second < norelax_dist2) norelax_dist2 = l_it->second; } } return will_be_active; } }; } // namespace witness_complex } // namespace Gudhi #endif // WITNESS_COMPLEX_H_