/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT. * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details. * Author(s): Vincent Rouvreau * * Copyright (C) 2015 Inria * * Modification(s): * - YYYY/MM Author: Description of the modification */ #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MODULE "alpha_complex" #include #include #include #include #include #include // float comparison #include #include #include #include // to construct a simplex_tree from Delaunay_triangulation #include #include #include // Use dynamic_dimension_tag for the user to be able to set dimension typedef CGAL::Epeck_d< CGAL::Dynamic_dimension_tag > Exact_kernel_d; // Use static dimension_tag for the user not to be able to set dimension typedef CGAL::Epeck_d< CGAL::Dimension_tag<3> > Exact_kernel_s; // Use dynamic_dimension_tag for the user to be able to set dimension typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Inexact_kernel_d; // Use static dimension_tag for the user not to be able to set dimension typedef CGAL::Epick_d< CGAL::Dimension_tag<3> > Inexact_kernel_s; // The triangulation uses the default instantiation of the TriangulationDataStructure template parameter typedef boost::mpl::list list_of_kernel_variants; BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_from_OFF_file, TestedKernel, list_of_kernel_variants) { // ---------------------------------------------------------------------------- // // Init of an alpha-complex from a OFF file // // ---------------------------------------------------------------------------- std::string off_file_name("alphacomplexdoc.off"); double max_alpha_square_value = 60.0; std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" << max_alpha_square_value << "==========" << std::endl; Gudhi::alpha_complex::Alpha_complex alpha_complex_from_file(off_file_name); Gudhi::Simplex_tree<> simplex_tree_60; BOOST_CHECK(alpha_complex_from_file.create_complex(simplex_tree_60, max_alpha_square_value)); std::cout << "simplex_tree_60.dimension()=" << simplex_tree_60.dimension() << std::endl; BOOST_CHECK(simplex_tree_60.dimension() == 2); std::cout << "simplex_tree_60.num_vertices()=" << simplex_tree_60.num_vertices() << std::endl; BOOST_CHECK(simplex_tree_60.num_vertices() == 7); std::cout << "simplex_tree_60.num_simplices()=" << simplex_tree_60.num_simplices() << std::endl; BOOST_CHECK(simplex_tree_60.num_simplices() == 25); max_alpha_square_value = 59.0; std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" << max_alpha_square_value << "==========" << std::endl; Gudhi::Simplex_tree<> simplex_tree_59; BOOST_CHECK(alpha_complex_from_file.create_complex(simplex_tree_59, max_alpha_square_value)); std::cout << "simplex_tree_59.dimension()=" << simplex_tree_59.dimension() << std::endl; BOOST_CHECK(simplex_tree_59.dimension() == 2); std::cout << "simplex_tree_59.num_vertices()=" << simplex_tree_59.num_vertices() << std::endl; BOOST_CHECK(simplex_tree_59.num_vertices() == 7); std::cout << "simplex_tree_59.num_simplices()=" << simplex_tree_59.num_simplices() << std::endl; BOOST_CHECK(simplex_tree_59.num_simplices() == 23); } // Use static dimension_tag for the user not to be able to set dimension typedef CGAL::Epeck_d< CGAL::Dimension_tag<4> > Kernel_4; typedef Kernel_4::Point_d Point_4; typedef std::vector Vector_4_Points; bool is_point_in_list(Vector_4_Points points_list, Point_4 point) { for (auto& point_in_list : points_list) { if (point_in_list == point) { return true; // point found } } return false; // point not found } BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) { // ---------------------------------------------------------------------------- // Init of a list of points // ---------------------------------------------------------------------------- Vector_4_Points points; std::vector coords = { 0.0, 0.0, 0.0, 1.0 }; points.push_back(Point_4(coords.begin(), coords.end())); coords = { 0.0, 0.0, 1.0, 0.0 }; points.push_back(Point_4(coords.begin(), coords.end())); coords = { 0.0, 1.0, 0.0, 0.0 }; points.push_back(Point_4(coords.begin(), coords.end())); coords = { 1.0, 0.0, 0.0, 0.0 }; points.push_back(Point_4(coords.begin(), coords.end())); // ---------------------------------------------------------------------------- // Init of an alpha complex from the list of points // ---------------------------------------------------------------------------- Gudhi::alpha_complex::Alpha_complex alpha_complex_from_points(points); std::cout << "========== Alpha_complex_from_points ==========" << std::endl; Gudhi::Simplex_tree<> simplex_tree; BOOST_CHECK(alpha_complex_from_points.create_complex(simplex_tree)); // Another way to check num_simplices std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl; int num_simplices = 0; for (auto f_simplex : simplex_tree.filtration_simplex_range()) { num_simplices++; std::cout << " ( "; for (auto vertex : simplex_tree.simplex_vertex_range(f_simplex)) { std::cout << vertex << " "; } std::cout << ") -> " << "[" << simplex_tree.filtration(f_simplex) << "] "; std::cout << std::endl; } BOOST_CHECK(num_simplices == 15); std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl; BOOST_CHECK(simplex_tree.num_simplices() == 15); std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl; BOOST_CHECK(simplex_tree.dimension() == 3); std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl; BOOST_CHECK(simplex_tree.num_vertices() == points.size()); for (auto f_simplex : simplex_tree.filtration_simplex_range()) { switch (simplex_tree.dimension(f_simplex)) { case 0: GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 0.0); break; case 1: GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 1.0/2.0); break; case 2: GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 2.0/3.0); break; case 3: GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 3.0/4.0); break; default: BOOST_CHECK(false); // Shall not happen break; } } Point_4 p0 = alpha_complex_from_points.get_point(0); std::cout << "alpha_complex_from_points.get_point(0)=" << p0 << std::endl; BOOST_CHECK(4 == p0.dimension()); BOOST_CHECK(is_point_in_list(points, p0)); Point_4 p1 = alpha_complex_from_points.get_point(1); std::cout << "alpha_complex_from_points.get_point(1)=" << p1 << std::endl; BOOST_CHECK(4 == p1.dimension()); BOOST_CHECK(is_point_in_list(points, p1)); Point_4 p2 = alpha_complex_from_points.get_point(2); std::cout << "alpha_complex_from_points.get_point(2)=" << p2 << std::endl; BOOST_CHECK(4 == p2.dimension()); BOOST_CHECK(is_point_in_list(points, p2)); Point_4 p3 = alpha_complex_from_points.get_point(3); std::cout << "alpha_complex_from_points.get_point(3)=" << p3 << std::endl; BOOST_CHECK(4 == p3.dimension()); BOOST_CHECK(is_point_in_list(points, p3)); // Test to the limit BOOST_CHECK_THROW (alpha_complex_from_points.get_point(4), std::out_of_range); BOOST_CHECK_THROW (alpha_complex_from_points.get_point(-1), std::out_of_range); BOOST_CHECK_THROW (alpha_complex_from_points.get_point(1234), std::out_of_range); // Test after prune_above_filtration bool modified = simplex_tree.prune_above_filtration(0.6); if (modified) { simplex_tree.initialize_filtration(); } BOOST_CHECK(modified); // Another way to check num_simplices std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl; num_simplices = 0; for (auto f_simplex : simplex_tree.filtration_simplex_range()) { num_simplices++; std::cout << " ( "; for (auto vertex : simplex_tree.simplex_vertex_range(f_simplex)) { std::cout << vertex << " "; } std::cout << ") -> " << "[" << simplex_tree.filtration(f_simplex) << "] "; std::cout << std::endl; } BOOST_CHECK(num_simplices == 10); std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl; BOOST_CHECK(simplex_tree.num_simplices() == 10); std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl; BOOST_CHECK(simplex_tree.dimension() == 1); std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl; BOOST_CHECK(simplex_tree.num_vertices() == 4); for (auto f_simplex : simplex_tree.filtration_simplex_range()) { switch (simplex_tree.dimension(f_simplex)) { case 0: GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 0.0); break; case 1: GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 1.0/2.0); break; default: BOOST_CHECK(false); // Shall not happen break; } } } BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_from_empty_points, TestedKernel, list_of_kernel_variants) { std::cout << "========== Alpha_complex_from_empty_points ==========" << std::endl; // ---------------------------------------------------------------------------- // Init of an empty list of points // ---------------------------------------------------------------------------- std::vector points; // ---------------------------------------------------------------------------- // Init of an alpha complex from the list of points // ---------------------------------------------------------------------------- Gudhi::alpha_complex::Alpha_complex alpha_complex_from_points(points); // Test to the limit BOOST_CHECK_THROW (alpha_complex_from_points.get_point(0), std::out_of_range); Gudhi::Simplex_tree<> simplex_tree; BOOST_CHECK(!alpha_complex_from_points.create_complex(simplex_tree)); std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl; BOOST_CHECK(simplex_tree.num_simplices() == 0); std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl; BOOST_CHECK(simplex_tree.dimension() == -1); std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl; BOOST_CHECK(simplex_tree.num_vertices() == points.size()); } using Inexact_kernel_2 = CGAL::Epick_d< CGAL::Dimension_tag<2> >; using Exact_kernel_2 = CGAL::Epeck_d< CGAL::Dimension_tag<2> >; using list_of_kernel_2_variants = boost::mpl::list; BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_with_duplicated_points, TestedKernel, list_of_kernel_2_variants) { std::cout << "========== Alpha_complex_with_duplicated_points ==========" << std::endl; using Point = typename TestedKernel::Point_d; using Vector_of_points = std::vector; // ---------------------------------------------------------------------------- // Init of a list of points // ---------------------------------------------------------------------------- Vector_of_points points; points.push_back(Point(1.0, 1.0)); points.push_back(Point(7.0, 0.0)); points.push_back(Point(4.0, 6.0)); points.push_back(Point(9.0, 6.0)); points.push_back(Point(0.0, 14.0)); points.push_back(Point(2.0, 19.0)); points.push_back(Point(9.0, 17.0)); // duplicated points points.push_back(Point(1.0, 1.0)); points.push_back(Point(7.0, 0.0)); // ---------------------------------------------------------------------------- // Init of an alpha complex from the list of points // ---------------------------------------------------------------------------- std::cout << "Init" << std::endl; Gudhi::alpha_complex::Alpha_complex alpha_complex_from_points(points); Gudhi::Simplex_tree<> simplex_tree; std::cout << "create_complex" << std::endl; BOOST_CHECK(alpha_complex_from_points.create_complex(simplex_tree)); std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl; BOOST_CHECK(simplex_tree.num_vertices() < points.size()); }