/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT. * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details. * Author(s): Vincent Rouvreau * * Copyright (C) 2014 Inria * * Modification(s): * - YYYY/MM Author: Description of the modification */ #include #include #include #include #include #include #include #include #include #include // for numeric_limits<> // gudhi type definition using Simplex_tree = Gudhi::Simplex_tree; using Filtration_value = Simplex_tree::Filtration_value; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &safe, std::string &weight_file, std::string &cuboid_file, std::string &output_file_diag, Filtration_value &alpha_square_max_value, int &coeff_field_characteristic, Filtration_value &min_persistence); bool read_weight_file(const std::string &weight_file, std::vector &weights) { // Read weights information from file std::ifstream weights_ifstr(weight_file); if (weights_ifstr.good()) { double weight = 0.0; // Attempt read the weight in a double format, return false if it fails while (weights_ifstr >> weight) { weights.push_back(weight); } } else { return false; } return true; } bool read_cuboid_file(const std::string &cuboid_file, double &x_min, double &y_min, double &z_min, double &x_max, double &y_max, double &z_max) { // Read weights information from file std::ifstream iso_cuboid_str(cuboid_file); if (iso_cuboid_str.is_open()) { if (!(iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max)) { return false; } } else { return false; } return true; } template std::vector read_off(const std::string &off_file_points) { // Read the OFF file (input file name given as parameter) and triangulate points Gudhi::Points_3D_off_reader off_reader(off_file_points); // Check the read operation was correct if (!off_reader.is_valid()) { std::cerr << "Unable to read OFF file " << off_file_points << std::endl; exit(-1); } return off_reader.get_point_cloud(); } int main(int argc, char **argv) { std::string off_file_points; std::string weight_file; std::string cuboid_file; std::string output_file_diag; Filtration_value alpha_square_max_value = 0.; int coeff_field_characteristic = 0; Filtration_value min_persistence = 0.; bool exact_version = false; bool fast_version = false; bool weighted_version = false; bool periodic_version = false; program_options(argc, argv, off_file_points, exact_version, fast_version, weight_file, cuboid_file, output_file_diag, alpha_square_max_value, coeff_field_characteristic, min_persistence); std::vector weights; if (weight_file != std::string()) { if (!read_weight_file(weight_file, weights)) { std::cerr << "Unable to read weights file " << weight_file << std::endl; exit(-1); } weighted_version = true; } double x_min = 0., y_min = 0., z_min = 0., x_max = 0., y_max = 0., z_max = 0.; std::ifstream iso_cuboid_str(argv[3]); if (cuboid_file != std::string()) { if (!read_cuboid_file(cuboid_file, x_min, y_min, z_min, x_max, y_max, z_max)) { std::cerr << "Unable to read cuboid file " << cuboid_file << std::endl; exit(-1); } periodic_version = true; } Gudhi::alpha_complex::complexity complexity = Gudhi::alpha_complex::complexity::SAFE; if (exact_version) { if (fast_version) { std::cerr << "You cannot set the exact and the fast version." << std::endl; exit(-1); } complexity = Gudhi::alpha_complex::complexity::EXACT; } if (fast_version) { complexity = Gudhi::alpha_complex::complexity::FAST; } Simplex_tree simplex_tree; switch (complexity) { case Gudhi::alpha_complex::complexity::FAST: if (weighted_version) { if (periodic_version) { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } else { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, weights); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } } else { if (periodic_version) { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } else { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } } break; case Gudhi::alpha_complex::complexity::EXACT: if (weighted_version) { if (periodic_version) { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } else { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, weights); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } } else { if (periodic_version) { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } else { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } } break; case Gudhi::alpha_complex::complexity::SAFE: if (weighted_version) { if (periodic_version) { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } else { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, weights); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } } else { if (periodic_version) { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } else { using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; auto points = read_off(off_file_points); Alpha_complex_3d alpha_complex(points); alpha_complex.create_complex(simplex_tree, alpha_square_max_value); } } break; default: std::cerr << "Unknown complexity value " << std::endl; exit(-1); break; } std::clog << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl; // Compute the persistence diagram of the complex Persistent_cohomology pcoh(simplex_tree, true); // initializes the coefficient field for homology pcoh.init_coefficients(coeff_field_characteristic); pcoh.compute_persistent_cohomology(min_persistence); // Output the diagram in filediag if (output_file_diag.empty()) { pcoh.output_diagram(); } else { std::clog << "Result in file: " << output_file_diag << std::endl; std::ofstream out(output_file_diag); pcoh.output_diagram(out); out.close(); } return 0; } void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &fast, std::string &weight_file, std::string &cuboid_file, std::string &output_file_diag, Filtration_value &alpha_square_max_value, int &coeff_field_characteristic, Filtration_value &min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()("input-file", po::value(&off_file_points), "Name of file containing a point set. Format is one point per line: X1 ... Xd "); po::options_description visible("Allowed options", 100); visible.add_options()("help,h", "produce help message")( "exact,e", po::bool_switch(&exact), "To activate exact version of Alpha complex 3d (default is false, not available if fast is set)")( "fast,f", po::bool_switch(&fast), "To activate fast version of Alpha complex 3d (default is false, not available if exact is set)")( "weight-file,w", po::value(&weight_file)->default_value(std::string()), "Name of file containing a point weights. Format is one weight per line:\n W1\n ...\n Wn ")( "cuboid-file,c", po::value(&cuboid_file), "Name of file describing the periodic domain. Format is:\n min_hx min_hy min_hz\n max_hx max_hy max_hz")( "output-file,o", po::value(&output_file_diag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::clog")( "max-alpha-square-value,r", po::value(&alpha_square_max_value) ->default_value(std::numeric_limits::infinity()), "Maximal alpha square value for the Alpha complex construction.")( "field-charac,p", po::value(&coeff_field_characteristic)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.")( "min-persistence,m", po::value(&min_persistence), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length " "intervals"); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file") || !vm.count("weight-file")) { std::clog << std::endl; std::clog << "Compute the persistent homology with coefficient field Z/pZ \n"; std::clog << "of a 3D Alpha complex defined on a set of input points.\n"; std::clog << "3D Alpha complex can be safe (by default) exact or fast, weighted and/or periodic\n\n"; std::clog << "The output diagram contains one bar per line, written with the convention: \n"; std::clog << " p dim b d \n"; std::clog << "where dim is the dimension of the homological feature,\n"; std::clog << "b and d are respectively the birth and death of the feature and \n"; std::clog << "p is the characteristic of the field Z/pZ used for homology coefficients.\n\n"; std::clog << "Usage: " << argv[0] << " [options] input-file weight-file\n\n"; std::clog << visible << std::endl; exit(-1); } }