
The gudhi stat doc.
Ver 1.0.

1 Idea

In order to perform most of the statistical tests and machine learning algorithms on a data one need
to be able to perform only a very limited number of operations on them. Let us fix a representation
of data of a type A. To perform most of the statistical and machine learning operations one need
to be able to compute average of objects of type A (so that the averaged object is also of a type A),
to compute distance between objects of a type A, to vectorize object of a type A and to compute
scalar product of a pair objects of a type A.

To put this statement into a context, let us assume we have two collections c1, ..., cn and d1, ..., dn
of objects of a type A. We want to verify if the average of those two collections are different by
performing a permutation test. First of all, we compute averages of those two collections: C =
average of c1, ..., cn and D = average of d1, ..., dn. Note that both C and D are of a type A. Then
we compute d(C,D), a distance between C and D. Later we put the two collections into one bin:

B = c1, ..., cn, d1, ..., dn

Then we shuffle B, and we divide the shuffled version of B into two classes: B1 and B2 (in this case,
of the same cardinality). Then we compute averages B̂A and B̂2 of elements in B1 and B2. Note
that again, B̂1 and B̂2 are of a type A. Then we compute their distance d(B̂1, B̂2). The procedure
of shuffling and dividing the set B is repeated N times (where N is reasonably large number).
Then the p-value of a statement that the averages of c1, ..., cn and d1, ..., dn is approximated by the
number of times d(B̂1, B̂2) > d(C,D) divided by N .

The permutation test reminded above can be performed for any type A which can be averaged,
and which allows for computations of distances.

The Gudhi stat contains a collection of various representations of persistent homology that im-
plements various concepts described below:

1. Interface of a representation of persistence that allows averaging (so that the average object
is of the same type).

2. Interface of representation of persistence that allows computations of distances.

3. Interface of representation of persistence that allows computations of scalar products.

4. Interface of representation of persistence that allows vectorization.

5. Interface of representation of persistence that allows computations of real–valued characteris-
tics of objects.

At the moment an implementation of the following representations of persistence are available
(further details of those representations will be discussed later):

1. Exact persistence landscapes (allow averaging, computation of distances, scalar products,
vectorizations and real value characteristics).

1



2. Persistence landscapes on a grid (allow averaging, computation of distances scalar products,
vectorizations and real value characteristics).

3. Persistence heat maps various representations where one put some weighted or not Gaussian
kernel for each point of diagram (allow averaging, computation of distances, scalar products,
vectorizations and real value characteristics).

4. Persistence vectors (allow averaging, computation of distances, scalar products, vectorizations
and real value characteristics).

5. Persistence diagrams / barcodes (allow computation of distances, vectorizations and real value
characteristics).

Note that at the while functionalities like averaging, distances and scalar products are fixed, there
is no canonical way of vectorizing and computing real valued characteristics of objects. Therefore
the vectorizations and computation of real value characteristics procedures are quite likely to evolve
in the furthering versions of the library.

The main aim of this implementation is to be able to implement various statistical methods, both
on the level of C++ and on the level of python. The methods will operate on the functionalities
offered by concepts. That means that the statistical and ML methods will be able to operate on any
representation that implement the required concept (including the ones that are not in the library
at the moment). That gives provides a framework, that is very easy to extend, for topological
statistics.

Below we are discussing the representations which are currently implemented in Gudhi stat:

2 Persistence Landscapes

Persistence landscapes were originally proposed by Bubenik in [1]. Efficient algorithms to compute
them rigorously were proposed by Bubenik and D lotko in [2]. The idea of persistence landscapes is
shortly summarized in below.

To begin with, suppose we are given a point (b, d) ∈ R2 in a persistence diagram. With this
point, we associate a piecewise linear function f(b,d) : R→ [0,∞), which is defined as

f(b,d)(x) =


0 if x 6∈ (b, d) ,

x− b if x ∈
(
b, b+d

2

]
,

d− x if x ∈
(
b+d
2 , d

)
.

(1)

A persistence landscape of the birth-death pairs (bi, di), where i = 1, . . . ,m, which constitute
the given persistence diagram is the sequence of functions λk : R → [0,∞) for k ∈ N, where λk(x)
denotes the kth largest value of the numbers f(bi,di)(x), for i = 1, . . . ,m, and we define λk(x) = 0 if
k > m. Equivalently, this sequence of functions can be combined into a single function L : N×R→
[0,∞) of two variables, if we define L(k, t) = λk(t).

The detailed description of algorithms used to compute persistence landscapes can be found
in [2]. Note that this implementation provides exact representation of landscapes. That have many
advantages, but also a few drawbacks. For instance, as discussed in [2], the exact representation of
landscape may be of quadratic size with respect to the input persistence diagram. It may therefore

2



happen that, for very large diagrams, using this representation may be memory–prohibitive. In
such a case, there are two possible ways to proceed:

1. Use non exact representation on a grid described in the Section 3.

2. Compute just a number of initial nonzero landscapes. This option is available from C++
level.

3 Persistence Landscapes on a grid

This is an alternative, not–exact, representation of persistence landscapes defined in the Section 2.
Unlike in the Section 2 we build a representation of persistence landscape by sampling its values
on a finite, equally distributed grid of points. Since, the persistence landscapes that originate from
persistence diagrams have slope 1 or −1, we have an estimate of a region between the grid points
where the landscape cab be located. That allows to estimate an error make when performing various
operations on landscape. Note that for average landscapes the slope is in range [−1, 1] and similar
estimate can be used.

Due to a lack of rigorous description of the algorithms to deal with this non–rigorous representaion
of persistence landscapes in the literature, we are providing a short discussion of them in below.

Let us assume that we want to compute persistence landscape on a interval [x, y]. Let us assume
that we want to use N grid points for that purpose. Then we will sample the persistence landscape
on points x1 = x, x2 = x + y−x

N , . . . , xN = y. Persistence landscapes are represented as a vector
of vectors of real numbers. Assume that i-th vector consist of ni numbers sorted from larger to
smaller. They represent the values of the functions λ1, . . . , λni (λni+1 and the functions with larger
indices are then zero functions) on the i-th point of a grid, i.e. x+ iy−x

N .
When averaging two persistence landscapes represented by a grid we need to make sure that they

are defined in a compatible grids. I.e. the intervals [x, y] on which they are defined are the same,
and the numbers of grid points N are the same in both cases. If this is the case, we simply compute
point-wise averages of the entries of corresponding vectors1

Computations of distances between two persistence landscapes on a grid is not much different than
in the rigorous case. In this case, we sum up the distances between the same levels of corresponding
landscapes. For fixed level, we approximate the landscapes between the corresponding constitutive
points of landscapes by linear functions, and compute the Lp distance between them.

Similarly as in case of distance, when computing the scalar product of two persistence landscapes
on a grid, we sum up the scalar products of corresponding levels of landscapes. For each level, we
assume that the persistence landscape on a grid between two grid points is approximated by linear
function. Therefore to compute scalar product of two corresponding levels of landscapes, we sum
up the integrals of products of line segments for every pair of constitutive grid points.

Note that for this representation we need to specify a few parameters:

1. Begin and end point of a grid – the interval [x, y] (real numbers)

2. Number of points in a grid (positive integer N).

Note that the same representation is used in TDA R-package [3].

1In this whole section we assume that if one vector of numbers is shorter than another, we extend the shorter one
with zeros so that they have the same length.

3



4 Persistence heat maps

This is a general class of discrete structures which are based on idea of placing a kernel in the points
of persistence diagrams. This idea appeared in work by many authors over the last 15 years. As
far as we know this idea was firstly described in the work of Bologna group in [4] and [5]. Later it
has been described by Colorado State University group in [6]. The presented paper in the first time
provide a discussion of stability of the representation. Also, the same ideas are used in construction
of two recent kernels used for machine learning: [7] and [8]. Both the kernel’s construction uses
interesting ideas to ensure stability of the representation with respect to Wasserstein metric. In
the kernel presented in [7], a scaling function is used to multiply the Gaussian kernel in the way
that the points close to diagonal got low weight and consequently do not have a big influence on
the resulting distribution. In [8] for every point (b, d) two Gaussian kernels are added: first, with a
weight 1 in a point (b, d), and the second, with the weight −1 for a point (b, d). In both cases, the
representations are stable with respect to 1-Wasserstein distance.

In Gudhi stat we currently implement a discretization of the distributions described above. The
base of this implementation is 2-dimensional array of pixels. Each pixel have assigned a real value
which is a sum of values of distributions induced by each point of the persistence diagram. At the
moment we compute the sum of values on a center of a pixels. It can be easily extended to any
other function (like for instance sum of integrals of the intermediate distribution on a pixel).

The parameters that determine the structure are the following:

1. A positive integer k determining the size of the kernel we used (we always assume that the
kernels are square).

2. A filter: in practice a square matrix of a size 2k+1×2k+1. By default, this is a discretization
of N(0,1) kernel.

3. The box [x0, x1]× [y0, y1] bounding the domain of the persistence image.

4. Scaling function. Each Gaussian kernel at point (p, q) gets multiplied by the value of this
function at the point (p, q).

5. A boolean value determining if the space below diagonal should be erased or not. To be
precise: when points close to diagonal are given then sometimes the kernel have support that
reaches the region below the diagonal. If the value of this parameter is true, then the values
below diagonal can be erased.

5 Persistence vectors

This is a representation of persistent homology in a form of a vector which was designed for an
application in 3d graphic in [9]. Below we provide a short description of this representation.

Given a persistence diagram D = {(bi, di)}, for every pair of birth–death points (b1, d1) and
(b2, d2) we compute the following three distances:

1. d((b1, d1), (b2, d2)).

2. d((b1, d1), (
b1,d1
2 , b1,d12 )).

3. d((b2, d2), (
b2,d2
2 , b2,d22 )).

4



We pick the smallest of those and add it to a vector. The obtained vector of numbers is then sorted
in decreasing order. This way we obtain a persistence vector representing the diagram.

Given two persistence vectors, the computation of distances, averages and scalar products is
straightforward. Average is simply a coordinate-wise average of a collection of vectors. In this
section we assume that the vectors are extended by zeros if they are of a different size. To compute
distances we compute absolute value of differences between coordinates. A scalar product is a sum
of products of values at the corresponding positions of two vectors.

References

[1] P. Bubenik, Statistical topological data analysis using persistence landscapes, Journal of Ma-
chine Learning Research, 16 (2015), 77102.

[2] P. Bubenik, P. Dlotko, A persistence landscapes toolbox for topological statistics. Journal of
Symbolic Computation.

[3] B. Fasy, J. Kim, F. Lecci, C. Maria, Introduction to the R package TDA, arXiv:1411.1830.

[4] P. Donatini, P. Frosini, A. Lovato, Size functions for signature recognition, Proceedings of
SPIE, Vision Geometry VII, vol. 3454 (1998).

[5] M. Ferri, P. Frosini, A. Lovato, C. Zambelli, Point selection: A new comparison scheme for size
functions (With an application to monogram recognition), Proceedings Third Asian Conference
on Computer Vision, Lecture Notes in Computer Science 1351.

[6] H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville, C.
Peterson, P. Shipman, L. Ziegelmeier, Persistence Images: A Stable Vector Representation of
Persistent Homology, arXiv:1507.06217.

[7] G. Kusano, K. Fukumizu, Y. Hiraoka, Persistence weighted Gaussian kernel for topological
data analysis, arXiv:1601.01741.

[8] J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, A Stable Multi-Scale Kernel for Topological
Machine Learning, arXiv:1412.6821.

[9] M. Carrire, S. Oudot, M. Ovsjanikov, Stable Topological Signatures for Points on 3D Shapes.,
Proc. Sympos. on Geometry Processing, July 2015.

5


