/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2016 INRIA * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef CHOOSE_N_FARTHEST_POINTS_H_ #define CHOOSE_N_FARTHEST_POINTS_H_ #include #include #include #include #include #include #include #include // for sort #include #include #include // for numeric_limits<> namespace Gudhi { namespace subsampling { /** * \ingroup subsampling * \brief Subsample by a greedy strategy of iteratively adding the farthest point from the * current chosen point set to the subsampling. * The iteration starts with the landmark `starting point`. * \details It chooses `final_size` points from a random access range `input_pts` and * outputs it in the output iterator `output_it`. * */ template < typename Kernel, typename Point_container, typename OutputIterator> void choose_n_farthest_points(Kernel const &k, Point_container const &input_pts, std::size_t final_size, std::size_t starting_point, OutputIterator output_it) { std::size_t nb_points = boost::size(input_pts); if (final_size > nb_points) final_size = nb_points; // Tests to the limit if (final_size < 1) return; typename Kernel::Squared_distance_d sqdist = k.squared_distance_d_object(); std::size_t current_number_of_landmarks = 0; // counter for landmarks const double infty = std::numeric_limits::infinity(); // infinity (see next entry) std::vector< double > dist_to_L(nb_points, infty); // vector of current distances to L from input_pts std::size_t curr_max_w = starting_point; for (current_number_of_landmarks = 0; current_number_of_landmarks != final_size; current_number_of_landmarks++) { // curr_max_w at this point is the next landmark *output_it++ = input_pts[curr_max_w]; std::size_t i = 0; for (auto& p : input_pts) { double curr_dist = sqdist(p, *(std::begin(input_pts) + curr_max_w)); if (curr_dist < dist_to_L[i]) dist_to_L[i] = curr_dist; ++i; } // choose the next curr_max_w double curr_max_dist = 0; // used for defining the furhest point from L for (i = 0; i < dist_to_L.size(); i++) if (dist_to_L[i] > curr_max_dist) { curr_max_dist = dist_to_L[i]; curr_max_w = i; } } } /** * \ingroup subsampling * \brief Subsample by a greedy strategy of iteratively adding the farthest point from the * current chosen point set to the subsampling. * The iteration starts with a random landmark. * \details It chooses `final_size` points from a random access range `input_pts` and * outputs it in the output iterator `output_it`. * */ template < typename Kernel, typename Point_container, typename OutputIterator> void choose_n_farthest_points(Kernel const& k, Point_container const &input_pts, unsigned final_size, OutputIterator output_it) { // Tests to the limit if ((final_size < 1) || (input_pts.size() == 0)) return; // Choose randomly the first landmark std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis(0, (input_pts.size() - 1)); std::size_t starting_point = dis(gen); choose_n_farthest_points(k, input_pts, final_size, starting_point, output_it); } } // namespace subsampling } // namespace Gudhi #endif // CHOOSE_N_FARTHEST_POINTS_H_