/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT. * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details. * Author(s): Siargey Kachanovich * * Copyright (C) 2016 Inria * * Modification(s): * - YYYY/MM Author: Description of the modification */ #ifndef CHOOSE_N_FARTHEST_POINTS_H_ #define CHOOSE_N_FARTHEST_POINTS_H_ #include #include #include #include #include #include // for numeric_limits<> namespace Gudhi { namespace subsampling { /** * \ingroup subsampling */ enum : std::size_t { /** * Argument for `choose_n_farthest_points` to indicate that the starting point should be picked randomly. */ random_starting_point = std::size_t(-1) }; /** * \ingroup subsampling * \brief Subsample by a greedy strategy of iteratively adding the farthest point from the * current chosen point set to the subsampling. * The iteration starts with the landmark `starting point` or, if `starting point==random_starting_point`, with a random landmark. * \tparam Kernel must provide a type Kernel::Squared_distance_d which is a model of the * concept Kernel_d::Squared_distance_d (despite the name, taken from CGAL, this can be any kind of metric or proximity measure). * It must also contain a public member `squared_distance_d_object()` that returns an object of this type. * \tparam Point_range Range whose value type is Kernel::Point_d. It must provide random-access * via `operator[]` and the points should be stored contiguously in memory. * \tparam PointOutputIterator Output iterator whose value type is Kernel::Point_d. * \tparam DistanceOutputIterator Output iterator for distances. * \details It chooses `final_size` points from a random access range * `input_pts` and outputs them in the output iterator `output_it`. It also * outputs the distance from each of those points to the set of previous * points in `dist_it`. * @param[in] k A kernel object. * @param[in] input_pts Const reference to the input points. * @param[in] final_size The size of the subsample to compute. * @param[in] starting_point The seed in the farthest point algorithm. * @param[out] output_it The output iterator for points. * @param[out] dist_it The optional output iterator for distances. * */ template < typename Kernel, typename Point_range, typename PointOutputIterator, typename DistanceOutputIterator = Null_output_iterator> void choose_n_farthest_points(Kernel const &k, Point_range const &input_pts, std::size_t final_size, std::size_t starting_point, PointOutputIterator output_it, DistanceOutputIterator dist_it = {}) { std::size_t nb_points = boost::size(input_pts); if (final_size > nb_points) final_size = nb_points; // Tests to the limit if (final_size < 1) return; if (starting_point == random_starting_point) { // Choose randomly the first landmark std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution dis(0, nb_points - 1); starting_point = dis(gen); } typename Kernel::Squared_distance_d sqdist = k.squared_distance_d_object(); std::size_t current_number_of_landmarks = 0; // counter for landmarks const double infty = std::numeric_limits::infinity(); // infinity (see next entry) std::vector< double > dist_to_L(nb_points, infty); // vector of current distances to L from input_pts std::size_t curr_max_w = starting_point; for (current_number_of_landmarks = 0; current_number_of_landmarks != final_size; current_number_of_landmarks++) { // curr_max_w at this point is the next landmark *output_it++ = input_pts[curr_max_w]; *dist_it++ = dist_to_L[curr_max_w]; std::size_t i = 0; for (auto&& p : input_pts) { double curr_dist = sqdist(p, *(std::begin(input_pts) + curr_max_w)); if (curr_dist < dist_to_L[i]) dist_to_L[i] = curr_dist; ++i; } // choose the next curr_max_w double curr_max_dist = 0; // used for defining the furhest point from L for (i = 0; i < dist_to_L.size(); i++) if (dist_to_L[i] > curr_max_dist) { curr_max_dist = dist_to_L[i]; curr_max_w = i; } } } } // namespace subsampling } // namespace Gudhi #endif // CHOOSE_N_FARTHEST_POINTS_H_