#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np from sklearn.kernel_approximation import RBFSampler from sklearn.preprocessing import MinMaxScaler from gudhi.representations import (DiagramSelector, Clamping, Landscape, Silhouette, BettiCurve, ComplexPolynomial,\ TopologicalVector, DiagramScaler, BirthPersistenceTransform,\ PersistenceImage, PersistenceWeightedGaussianKernel, Entropy, \ PersistenceScaleSpaceKernel, SlicedWassersteinDistance,\ SlicedWassersteinKernel, PersistenceFisherKernel, WassersteinDistance) D1 = np.array([[0.,4.],[1.,2.],[3.,8.],[6.,8.], [0., np.inf], [5., np.inf]]) proc1 = DiagramSelector(use=True, point_type="finite") proc2 = DiagramScaler(use=True, scalers=[([0,1], MinMaxScaler())]) proc3 = DiagramScaler(use=True, scalers=[([1], Clamping(maximum=.9))]) D1 = proc3(proc2(proc1(D1))) plt.scatter(D1[:,0], D1[:,1]) plt.plot([0.,1.],[0.,1.]) plt.title("Test Persistence Diagram for vector methods") plt.show() LS = Landscape(resolution=1000) L = LS(D1) plt.plot(L[:1000]) plt.plot(L[1000:2000]) plt.plot(L[2000:3000]) plt.title("Landscape") plt.show() def pow(n): return lambda x: np.power(x[1]-x[0],n) SH = Silhouette(resolution=1000, weight=pow(2)) plt.plot(SH(D1)) plt.title("Silhouette") plt.show() BC = BettiCurve(resolution=1000) plt.plot(BC(D1)) plt.title("Betti Curve") plt.show() CP = ComplexPolynomial(threshold=-1, polynomial_type="T") print("Complex polynomial is " + str(CP(D1))) TV = TopologicalVector(threshold=-1) print("Topological vector is " + str(TV(D1))) PI = PersistenceImage(bandwidth=.1, weight=lambda x: x[1], im_range=[0,1,0,1], resolution=[100,100]) plt.imshow(np.flip(np.reshape(PI(D1), [100,100]), 0)) plt.title("Persistence Image") plt.show() ET = Entropy(mode="scalar") print("Entropy statistic is " + str(ET(D1))) ET = Entropy(mode="vector", normalized=False) plt.plot(ET(D1)) plt.title("Entropy function") plt.show() D2 = np.array([[1.,5.],[3.,6.],[2.,7.]]) D2 = proc3(proc2(proc1(D2))) plt.scatter(D1[:,0], D1[:,1]) plt.scatter(D2[:,0], D2[:,1]) plt.plot([0.,1.],[0.,1.]) plt.title("Test Persistence Diagrams for kernel methods") plt.show() def arctan(C,p): return lambda x: C*np.arctan(np.power(x[1], p)) PWG = PersistenceWeightedGaussianKernel(bandwidth=1., kernel_approx=None, weight=arctan(1.,1.)) print("PWG kernel is " + str(PWG(D1, D2))) PWG = PersistenceWeightedGaussianKernel(kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])), weight=arctan(1.,1.)) print("Approximate PWG kernel is " + str(PWG(D1, D2))) PSS = PersistenceScaleSpaceKernel(bandwidth=1.) print("PSS kernel is " + str(PSS(D1, D2))) PSS = PersistenceScaleSpaceKernel(kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2]))) print("Approximate PSS kernel is " + str(PSS(D1, D2))) sW = SlicedWassersteinDistance(num_directions=100) print("SW distance is " + str(sW(D1, D2))) SW = SlicedWassersteinKernel(num_directions=100, bandwidth=1.) print("SW kernel is " + str(SW(D1, D2))) try: W = WassersteinDistance(order=2, internal_p=2, mode="pot") print("Wasserstein distance (POT) is " + str(W(D1, D2))) except ImportError: print("WassersteinDistance (POT) is not available, you may be missing pot.") W = WassersteinDistance(order=2, internal_p=2, mode="hera", delta=0.0001) print("Wasserstein distance (hera) is " + str(W(D1, D2))) try: from gudhi.representations import BottleneckDistance W = BottleneckDistance(epsilon=.001) print("Bottleneck distance is " + str(W(D1, D2))) except ImportError: print("BottleneckDistance is not available, you may be missing CGAL.") PF = PersistenceFisherKernel(bandwidth_fisher=1., bandwidth=1.) print("PF kernel is " + str(PF(D1, D2))) PF = PersistenceFisherKernel(bandwidth_fisher=1., bandwidth=1., kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2]))) print("Approximate PF kernel is " + str(PF(D1, D2)))