/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2014 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include // For CGAL < 4.11 #if CGAL_VERSION_NR < 1041100000 #include #endif // CGAL_VERSION_NR < 1041100000 #include #include #include #include #include #include #include #include #include "alpha_complex_3d_helper.h" // Alpha_shape_3 templates type definitions using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel; // For CGAL < 4.11 #if CGAL_VERSION_NR < 1041100000 using Gt = CGAL::Regular_triangulation_euclidean_traits_3; using Vb = CGAL::Alpha_shape_vertex_base_3; using Fb = CGAL::Alpha_shape_cell_base_3; using Tds = CGAL::Triangulation_data_structure_3; using Triangulation_3 = CGAL::Regular_triangulation_3; // From file type definition using Point_3 = Gt::Bare_point; using Weighted_point_3 = Gt::Weighted_point; // For CGAL >= 4.11 #else // CGAL_VERSION_NR < 1041100000 using Rvb = CGAL::Regular_triangulation_vertex_base_3; using Vb = CGAL::Alpha_shape_vertex_base_3; using Rcb = CGAL::Regular_triangulation_cell_base_3; using Cb = CGAL::Alpha_shape_cell_base_3; using Tds = CGAL::Triangulation_data_structure_3; using Triangulation_3 = CGAL::Regular_triangulation_3; // From file type definition using Point_3 = Triangulation_3::Bare_point; using Weighted_point_3 = Triangulation_3::Weighted_point; #endif // CGAL_VERSION_NR < 1041100000 using Alpha_shape_3 = CGAL::Alpha_shape_3; // filtration with alpha values needed type definition using Alpha_value_type = Alpha_shape_3::FT; using Object = CGAL::Object; using Dispatch = CGAL::Dispatch_output_iterator, CGAL::cpp11::tuple >, std::back_insert_iterator > > >; using Cell_handle = Alpha_shape_3::Cell_handle; using Facet = Alpha_shape_3::Facet; using Edge_3 = Alpha_shape_3::Edge; using Vertex_handle = Alpha_shape_3::Vertex_handle; using Vertex_list = std::vector; // gudhi type definition using ST = Gudhi::Simplex_tree; using Filtration_value = ST::Filtration_value; using Simplex_tree_vertex = ST::Vertex_handle; using Alpha_shape_simplex_tree_map = std::map; using Simplex_tree_vector_vertex = std::vector; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; void program_options(int argc, char *argv[], std::string &off_file_points, std::string &weight_file, std::string &output_file_diag, int &coeff_field_characteristic, Filtration_value &min_persistence); int main(int argc, char **argv) { std::string off_file_points; std::string weight_file; std::string output_file_diag; int coeff_field_characteristic; Filtration_value min_persistence; program_options(argc, argv, off_file_points, weight_file, output_file_diag, coeff_field_characteristic, min_persistence); // Read the OFF file (input file name given as parameter) and triangulate points Gudhi::Points_3D_off_reader off_reader(off_file_points); // Check the read operation was correct if (!off_reader.is_valid()) { std::cerr << "Unable to read OFF file " << off_file_points << std::endl; exit(-1); } // Retrieve the points std::vector lp = off_reader.get_point_cloud(); // Read weights information from file std::ifstream weights_ifstr(weight_file); std::vector wp; if (weights_ifstr.good()) { double weight = 0.0; std::size_t index = 0; wp.reserve(lp.size()); // Attempt read the weight in a double format, return false if it fails while ((weights_ifstr >> weight) && (index < lp.size())) { wp.push_back(Weighted_point_3(lp[index], weight)); index++; } if (index != lp.size()) { std::cerr << "Bad number of weights in file " << weight_file << std::endl; exit(-1); } } else { std::cerr << "Unable to read weights file " << weight_file << std::endl; exit(-1); } // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. Alpha_shape_3 as(wp.begin(), wp.end(), 0, Alpha_shape_3::GENERAL); #ifdef DEBUG_TRACES std::cout << "Alpha shape computed in GENERAL mode" << std::endl; #endif // DEBUG_TRACES // filtration with alpha values from alpha shape std::vector the_objects; std::vector the_alpha_values; Dispatch disp = CGAL::dispatch_output(std::back_inserter(the_objects), std::back_inserter(the_alpha_values)); as.filtration_with_alpha_values(disp); #ifdef DEBUG_TRACES std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl; #endif // DEBUG_TRACES Alpha_shape_3::size_type count_vertices = 0; Alpha_shape_3::size_type count_edges = 0; Alpha_shape_3::size_type count_facets = 0; Alpha_shape_3::size_type count_cells = 0; // Loop on objects vector Vertex_list vertex_list; ST simplex_tree; Alpha_shape_simplex_tree_map map_cgal_simplex_tree; std::vector::iterator the_alpha_value_iterator = the_alpha_values.begin(); for (auto object_iterator : the_objects) { // Retrieve Alpha shape vertex list from object if (const Cell_handle *cell = CGAL::object_cast(&object_iterator)) { vertex_list = from_cell(*cell); count_cells++; } else if (const Facet *facet = CGAL::object_cast(&object_iterator)) { vertex_list = from_facet(*facet); count_facets++; } else if (const Edge_3 *edge = CGAL::object_cast(&object_iterator)) { vertex_list = from_edge(*edge); count_edges++; } else if (const Vertex_handle *vertex = CGAL::object_cast(&object_iterator)) { count_vertices++; vertex_list = from_vertex(*vertex); } // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex Simplex_tree_vector_vertex the_simplex; for (auto the_alpha_shape_vertex : vertex_list) { Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex); if (the_map_iterator == map_cgal_simplex_tree.end()) { // alpha shape not found Simplex_tree_vertex vertex = map_cgal_simplex_tree.size(); #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex.push_back(vertex); map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex); } else { // alpha shape found Simplex_tree_vertex vertex = the_map_iterator->second; #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex.push_back(vertex); } } // Construction of the simplex_tree Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator); #ifdef DEBUG_TRACES std::cout << "filtration = " << filtr << std::endl; #endif // DEBUG_TRACES simplex_tree.insert_simplex(the_simplex, filtr); if (the_alpha_value_iterator != the_alpha_values.end()) ++the_alpha_value_iterator; else std::cout << "This shall not happen" << std::endl; } #ifdef DEBUG_TRACES std::cout << "vertices \t\t" << count_vertices << std::endl; std::cout << "edges \t\t" << count_edges << std::endl; std::cout << "facets \t\t" << count_facets << std::endl; std::cout << "cells \t\t" << count_cells << std::endl; std::cout << "Information of the Simplex Tree: " << std::endl; std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " "; std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl; std::cout << " Dimension = " << simplex_tree.dimension() << " "; #endif // DEBUG_TRACES #ifdef DEBUG_TRACES std::cout << "Iterator on vertices: " << std::endl; for (auto vertex : simplex_tree.complex_vertex_range()) { std::cout << vertex << " "; } #endif // DEBUG_TRACES // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl; // Compute the persistence diagram of the complex Persistent_cohomology pcoh(simplex_tree, true); // initializes the coefficient field for homology pcoh.init_coefficients(coeff_field_characteristic); pcoh.compute_persistent_cohomology(min_persistence); // Output the diagram in filediag if (output_file_diag.empty()) { pcoh.output_diagram(); } else { std::cout << "Result in file: " << output_file_diag << std::endl; std::ofstream out(output_file_diag); pcoh.output_diagram(out); out.close(); } return 0; } void program_options(int argc, char *argv[], std::string &off_file_points, std::string &weight_file, std::string &output_file_diag, int &coeff_field_characteristic, Filtration_value &min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()("input-file", po::value(&off_file_points), "Name of file containing a point set. Format is one point per line: X1 ... Xd ")( "weight-file", po::value(&weight_file), "Name of file containing a point weights. Format is one weigt per line: W1\n...\nWn "); po::options_description visible("Allowed options", 100); visible.add_options()("help,h", "produce help message")( "output-file,o", po::value(&output_file_diag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::cout")( "field-charac,p", po::value(&coeff_field_characteristic)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.")( "min-persistence,m", po::value(&min_persistence), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length " "intervals"); po::positional_options_description pos; pos.add("input-file", 1); pos.add("weight-file", 2); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file") || !vm.count("weight-file")) { std::cout << std::endl; std::cout << "Compute the persistent homology with coefficient field Z/pZ \n"; std::cout << "of a weighted 3D Alpha complex defined on a set of input points.\n \n"; std::cout << "The output diagram contains one bar per line, written with the convention: \n"; std::cout << " p dim b d \n"; std::cout << "where dim is the dimension of the homological feature,\n"; std::cout << "b and d are respectively the birth and death of the feature and \n"; std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl; std::cout << "Usage: " << argv[0] << " [options] input-file weight-file" << std::endl << std::endl; std::cout << visible << std::endl; exit(-1); } }