/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * Pawel Dlotko - 2017 - Swansea University, UK * * Copyright (C) 2014 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alpha_complex_3d_helper.h" // Traits using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel; using PK = CGAL::Periodic_3_regular_triangulation_traits_3; // Vertex type using DsVb = CGAL::Periodic_3_triangulation_ds_vertex_base_3<>; using Vb = CGAL::Regular_triangulation_vertex_base_3; using AsVb = CGAL::Alpha_shape_vertex_base_3; // Cell type using DsCb = CGAL::Periodic_3_triangulation_ds_cell_base_3<>; using Cb = CGAL::Regular_triangulation_cell_base_3; using AsCb = CGAL::Alpha_shape_cell_base_3; using Tds = CGAL::Triangulation_data_structure_3; using P3RT3 = CGAL::Periodic_3_regular_triangulation_3; using Alpha_shape_3 = CGAL::Alpha_shape_3; using Point_3 = P3RT3::Bare_point; using Weighted_point_3 = P3RT3::Weighted_point; // filtration with alpha values needed type definition using Alpha_value_type = Alpha_shape_3::FT; using Object = CGAL::Object; using Dispatch = CGAL::Dispatch_output_iterator, CGAL::cpp11::tuple >, std::back_insert_iterator > > >; using Cell_handle = Alpha_shape_3::Cell_handle; using Facet = Alpha_shape_3::Facet; using Edge_3 = Alpha_shape_3::Edge; using Vertex_handle = Alpha_shape_3::Vertex_handle; using Vertex_list = std::vector; // gudhi type definition using ST = Gudhi::Simplex_tree; using Filtration_value = ST::Filtration_value; using Simplex_tree_vertex = ST::Vertex_handle; using Alpha_shape_simplex_tree_map = std::map; using Simplex_tree_vector_vertex = std::vector; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; void usage(const std::string& progName) { std::cerr << "Usage: " << progName << " path_to_the_OFF_file path_to_weight_file path_to_the_cuboid_file " "coeff_field_characteristic[integer > 0] min_persistence[float >= -1.0]\n"; exit(-1); } int main(int argc, char* const argv[]) { // program args management if (argc != 6) { std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n"; usage(argv[0]); } int coeff_field_characteristic = atoi(argv[4]); Filtration_value min_persistence = strtof(argv[5], nullptr); // Read points from file std::string offInputFile(argv[1]); // Read the OFF file (input file name given as parameter) and triangulate points Gudhi::Points_3D_off_reader off_reader(offInputFile); // Check the read operation was correct if (!off_reader.is_valid()) { std::cerr << "Unable to read file " << offInputFile << std::endl; usage(argv[0]); } // Retrieve the points std::vector lp = off_reader.get_point_cloud(); // Read iso_cuboid_3 information from file std::ifstream iso_cuboid_str(argv[3]); double x_min, y_min, z_min, x_max, y_max, z_max; if (iso_cuboid_str.is_open()) { if (!(iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max)) { std::cerr << argv[3] << " - Bad file format." << std::endl; usage(argv[0]); } } else { std::cerr << "Unable to read file " << argv[3] << std::endl; usage(argv[0]); } // Checking if the cuboid is the same in x,y and z direction. If not, CGAL will not process it. if ((x_max - x_min != y_max - y_min) || (x_max - x_min != z_max - z_min) || (z_max - z_min != y_max - y_min)) { std::cerr << "The size of the cuboid in every directions is not the same." << std::endl; exit(-1); } double maximal_possible_weight = 0.015625 * (x_max - x_min) * (x_max - x_min); // Read weights information from file std::ifstream weights_ifstr(argv[2]); std::vector wp; if (weights_ifstr.is_open()) { double weight = 0.0; std::size_t index = 0; wp.reserve(lp.size()); // Attempt read the weight in a double format, return false if it fails while ((weights_ifstr >> weight) && (index < lp.size())) { if ((weight >= maximal_possible_weight) || (weight < 0)) { std::cerr << "At line " << (index + 1) << ", the weight (" << weight << ") is negative or more than or equal to maximal possible weight (" << maximal_possible_weight << ") = 1/64*cuboid length squared, which is not an acceptable input." << std::endl; exit(-1); } wp.push_back(Weighted_point_3(lp[index], weight)); index++; } if (index != lp.size()) { std::cerr << "Bad number of weights in file " << argv[2] << std::endl; usage(argv[0]); } } else { std::cerr << "Unable to read file " << argv[2] << std::endl; usage(argv[0]); } // Define the periodic cube P3RT3 prt(PK::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max)); // Heuristic for inserting large point sets (if pts is reasonably large) prt.insert(wp.begin(), wp.end(), true); // As prt won't be modified anymore switch to 1-sheeted cover if possible if (prt.is_triangulation_in_1_sheet()) { prt.convert_to_1_sheeted_covering(); } else { std::cerr << "ERROR: we were not able to construct a triangulation within a single periodic domain." << std::endl; exit(-1); } std::cout << "Weighted Periodic Delaunay computed." << std::endl; // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode // Maybe need to set it to GENERAL mode Alpha_shape_3 as(prt, 0, Alpha_shape_3::GENERAL); // filtration with alpha values from alpha shape std::vector the_objects; std::vector the_alpha_values; Dispatch disp = CGAL::dispatch_output(std::back_inserter(the_objects), std::back_inserter(the_alpha_values)); as.filtration_with_alpha_values(disp); #ifdef DEBUG_TRACES std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl; #endif // DEBUG_TRACES Alpha_shape_3::size_type count_vertices = 0; Alpha_shape_3::size_type count_edges = 0; Alpha_shape_3::size_type count_facets = 0; Alpha_shape_3::size_type count_cells = 0; // Loop on objects vector Vertex_list vertex_list; ST simplex_tree; Alpha_shape_simplex_tree_map map_cgal_simplex_tree; std::vector::iterator the_alpha_value_iterator = the_alpha_values.begin(); for (auto object_iterator : the_objects) { // Retrieve Alpha shape vertex list from object if (const Cell_handle* cell = CGAL::object_cast(&object_iterator)) { vertex_list = from_cell(*cell); count_cells++; } else if (const Facet* facet = CGAL::object_cast(&object_iterator)) { vertex_list = from_facet(*facet); count_facets++; } else if (const Edge_3* edge = CGAL::object_cast(&object_iterator)) { vertex_list = from_edge(*edge); count_edges++; } else if (const Vertex_handle* vertex = CGAL::object_cast(&object_iterator)) { count_vertices++; vertex_list = from_vertex(*vertex); } // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex Simplex_tree_vector_vertex the_simplex; for (auto the_alpha_shape_vertex : vertex_list) { Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex); if (the_map_iterator == map_cgal_simplex_tree.end()) { // alpha shape not found Simplex_tree_vertex vertex = map_cgal_simplex_tree.size(); #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex.push_back(vertex); map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex); } else { // alpha shape found Simplex_tree_vertex vertex = the_map_iterator->second; #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex.push_back(vertex); } } // Construction of the simplex_tree Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator); #ifdef DEBUG_TRACES std::cout << "filtration = " << filtr << std::endl; #endif // DEBUG_TRACES simplex_tree.insert_simplex(the_simplex, filtr); if (the_alpha_value_iterator != the_alpha_values.end()) ++the_alpha_value_iterator; else std::cout << "This shall not happen" << std::endl; } #ifdef DEBUG_TRACES std::cout << "vertices \t\t" << count_vertices << std::endl; std::cout << "edges \t\t" << count_edges << std::endl; std::cout << "facets \t\t" << count_facets << std::endl; std::cout << "cells \t\t" << count_cells << std::endl; std::cout << "Information of the Simplex Tree: " << std::endl; std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " "; std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl; std::cout << " Dimension = " << simplex_tree.dimension() << " "; #endif // DEBUG_TRACES #ifdef DEBUG_TRACES std::cout << "Iterator on vertices: " << std::endl; for (auto vertex : simplex_tree.complex_vertex_range()) { std::cout << vertex << " "; } #endif // DEBUG_TRACES // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl; // Compute the persistence diagram of the complex Persistent_cohomology pcoh(simplex_tree, true); // initializes the coefficient field for homology pcoh.init_coefficients(coeff_field_characteristic); pcoh.compute_persistent_cohomology(min_persistence); pcoh.output_diagram(); return 0; }