/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Pawel Dlotko, Vincent Rouvreau * * Copyright (C) 2016 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include // infinity #include // for sort // Types definition using Simplex_tree = Gudhi::Simplex_tree; using Filtration_value = Simplex_tree::Filtration_value; using Rips_complex = Gudhi::rips_complex::Rips_complex; using Field_Zp = Gudhi::persistent_cohomology::Field_Zp; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; using Correlation_matrix = std::vector>; using intervals_common = Gudhi::Persistence_interval_common; void program_options(int argc, char* argv[], std::string& csv_matrix_file, std::string& filediag, Filtration_value& correlation_min, int& dim_max, int& p, Filtration_value& min_persistence); int main(int argc, char* argv[]) { std::string csv_matrix_file; std::string filediag; Filtration_value correlation_min; int dim_max; int p; Filtration_value min_persistence; program_options(argc, argv, csv_matrix_file, filediag, correlation_min, dim_max, p, min_persistence); Correlation_matrix correlations = Gudhi::read_lower_triangular_matrix_from_csv_file(csv_matrix_file); Filtration_value threshold = 0; // Given a correlation matrix M, we compute component-wise M'[i,j] = 1-M[i,j] to get a distance matrix: for (size_t i = 0; i != correlations.size(); ++i) { for (size_t j = 0; j != correlations[i].size(); ++j) { correlations[i][j] = 1 - correlations[i][j]; // Here we make sure that the values of corelations lie between -1 and 1. // If not, we throw an exception. if ((correlations[i][j] < -1) || (correlations[i][j] > 1)) { std::cerr << "The input matrix is not a correlation matrix. The program will now terminate. \n"; throw "The input matrix is not a correlation matrix. The program will now terminate. \n"; } if (correlations[i][j] > threshold) threshold = correlations[i][j]; } } Rips_complex rips_complex_from_file(correlations, threshold); // Construct the Rips complex in a Simplex Tree Simplex_tree simplex_tree; rips_complex_from_file.create_complex(simplex_tree, dim_max); std::cout << "The complex contains " << simplex_tree.num_simplices() << " simplices \n"; std::cout << " and has dimension " << simplex_tree.dimension() << " \n"; // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); // Compute the persistence diagram of the complex Persistent_cohomology pcoh(simplex_tree); // initializes the coefficient field for homology pcoh.init_coefficients(p); // compute persistence pcoh.compute_persistent_cohomology(min_persistence); // invert the persistence diagram. The reason for this procedure is the following: // The input to the program is a corelation matrix M. When processing it, it is // turned into 1-M and the obtained persistence intervals are in '1-M' units. // Below we reverse every (birth,death) pair into (1-birth, 1-death) pair // so that the input and the output to the program is expressed in the same // units. auto pairs = pcoh.get_persistent_pairs(); std::vector processed_persistence_intervals; processed_persistence_intervals.reserve(pairs.size()); for (auto pair : pairs) { double birth = 1 - simplex_tree.filtration(get<0>(pair)); double death = 1 - simplex_tree.filtration(get<1>(pair)); unsigned dimension = (unsigned)simplex_tree.dimension(get<0>(pair)); int field = get<2>(pair); processed_persistence_intervals.push_back(intervals_common(birth, death, dimension, field)); } // sort the processed intervals: std::sort(processed_persistence_intervals.begin(), processed_persistence_intervals.end()); // and write them to a file if (filediag.empty()) { write_persistence_intervals_to_stream(processed_persistence_intervals); } else { std::ofstream out(filediag); write_persistence_intervals_to_stream(processed_persistence_intervals, out); } return 0; } void program_options(int argc, char* argv[], std::string& csv_matrix_file, std::string& filediag, Filtration_value& correlation_min, int& dim_max, int& p, Filtration_value& min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()( "input-file", po::value(&csv_matrix_file), "Name of file containing a corelation matrix. Can be square or lower triangular matrix. Separator is ';'."); po::options_description visible("Allowed options", 100); visible.add_options()("help,h", "produce help message")( "output-file,o", po::value(&filediag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::cout")( "min-edge-corelation,c", po::value(&correlation_min)->default_value(0), "Minimal corelation of an edge for the Rips complex construction.")( "cpx-dimension,d", po::value(&dim_max)->default_value(1), "Maximal dimension of the Rips complex we want to compute.")( "field-charac,p", po::value(&p)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.")( "min-persistence,m", po::value(&min_persistence), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length " "intervals"); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Compute the persistent homology with coefficient field Z/pZ \n"; std::cout << "of a Rips complex defined on a corelation matrix.\n \n"; std::cout << "The output diagram contains one bar per line, written with the convention: \n"; std::cout << " p dim b d \n"; std::cout << "where dim is the dimension of the homological feature,\n"; std::cout << "b and d are respectively the birth and death of the feature and \n"; std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; exit(-1); } }