/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2016 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include // infinity using K = CGAL::Epick_d; using Point_d = K::Point_d; using Point_vector = std::vector; using Strong_witness_complex = Gudhi::witness_complex::Euclidean_strong_witness_complex; using SimplexTree = Gudhi::Simplex_tree<>; using Filtration_value = SimplexTree::Filtration_value; using Field_Zp = Gudhi::persistent_cohomology::Field_Zp; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; void program_options(int argc, char* argv[], int& nbL, std::string& file_name, std::string& filediag, Filtration_value& max_squared_alpha, int& p, int& dim_max, Filtration_value& min_persistence); int main(int argc, char* argv[]) { std::string file_name; std::string filediag; Filtration_value max_squared_alpha; int p, nbL, lim_d; Filtration_value min_persistence; SimplexTree simplex_tree; program_options(argc, argv, nbL, file_name, filediag, max_squared_alpha, p, lim_d, min_persistence); // Extract the points from the file file_name Point_vector witnesses, landmarks; Gudhi::Points_off_reader off_reader(file_name); if (!off_reader.is_valid()) { std::cerr << "Witness complex - Unable to read file " << file_name << "\n"; exit(-1); // ----- >> } witnesses = Point_vector(off_reader.get_point_cloud()); std::cout << "Successfully read " << witnesses.size() << " points.\n"; std::cout << "Ambient dimension is " << witnesses[0].dimension() << ".\n"; // Choose landmarks (decomment one of the following two lines) // Gudhi::subsampling::pick_n_random_points(point_vector, nbL, std::back_inserter(landmarks)); Gudhi::subsampling::choose_n_farthest_points(K(), witnesses, nbL, Gudhi::subsampling::random_starting_point, std::back_inserter(landmarks)); // Compute witness complex Strong_witness_complex strong_witness_complex(landmarks, witnesses); strong_witness_complex.create_complex(simplex_tree, max_squared_alpha, lim_d); std::cout << "The complex contains " << simplex_tree.num_simplices() << " simplices \n"; std::cout << " and has dimension " << simplex_tree.dimension() << " \n"; // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); // Compute the persistence diagram of the complex Persistent_cohomology pcoh(simplex_tree); // initializes the coefficient field for homology pcoh.init_coefficients(p); pcoh.compute_persistent_cohomology(min_persistence); // Output the diagram in filediag if (filediag.empty()) { pcoh.output_diagram(); } else { std::ofstream out(filediag); pcoh.output_diagram(out); out.close(); } return 0; } void program_options(int argc, char* argv[], int& nbL, std::string& file_name, std::string& filediag, Filtration_value& max_squared_alpha, int& p, int& dim_max, Filtration_value& min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()("input-file", po::value(&file_name), "Name of file containing a point set in off format."); po::options_description visible("Allowed options", 100); Filtration_value default_alpha = std::numeric_limits::infinity(); visible.add_options()("help,h", "produce help message")("landmarks,l", po::value(&nbL), "Number of landmarks to choose from the point cloud.")( "output-file,o", po::value(&filediag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::cout")( "max-sq-alpha,a", po::value(&max_squared_alpha)->default_value(default_alpha), "Maximal squared relaxation parameter.")( "field-charac,p", po::value(&p)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.")( "min-persistence,m", po::value(&min_persistence)->default_value(0), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length " "intervals")("cpx-dimension,d", po::value(&dim_max)->default_value(std::numeric_limits::max()), "Maximal dimension of the strong witness complex we want to compute."); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Compute the persistent homology with coefficient field Z/pZ \n"; std::cout << "of a Strong witness complex defined on a set of input points.\n \n"; std::cout << "The output diagram contains one bar per line, written with the convention: \n"; std::cout << " p dim b d \n"; std::cout << "where dim is the dimension of the homological feature,\n"; std::cout << "b and d are respectively the birth and death of the feature and \n"; std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; exit(-1); } }