summaryrefslogtreecommitdiff
path: root/example/Bottleneck_distance/alpha_rips_persistence_bottleneck_distance.cpp
blob: 1e27887c4f062f8c934cc35d9a86f92ecba38e8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2017 Inria
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <gudhi/Alpha_complex.h>
#include <gudhi/Rips_complex.h>
#include <gudhi/distance_functions.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Points_off_io.h>
#include <gudhi/Bottleneck.h>

#include <CGAL/Epick_d.h>

#include <boost/program_options.hpp>

#include <string>
#include <vector>
#include <limits>  // infinity
#include <utility>  // for pair
#include <algorithm>  // for transform


// Types definition
using Simplex_tree = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
using Filtration_value = Simplex_tree::Filtration_value;
using Rips_complex = Gudhi::rips_complex::Rips_complex<Filtration_value>;
using Field_Zp = Gudhi::persistent_cohomology::Field_Zp;
using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Field_Zp >;
using Kernel = CGAL::Epick_d< CGAL::Dynamic_dimension_tag >;
using Point_d = Kernel::Point_d;
using Points_off_reader = Gudhi::Points_off_reader<Point_d>;

void program_options(int argc, char * argv[]
                     , std::string & off_file_points
                     , Filtration_value & threshold
                     , int & dim_max
                     , int & p
                     , Filtration_value & min_persistence);

static inline std::pair<double, double> compute_root_square(std::pair<double, double> input) {
  return std::make_pair(std::sqrt(input.first), std::sqrt(input.second));
}

int main(int argc, char * argv[]) {
  std::string off_file_points;
  Filtration_value threshold;
  int dim_max;
  int p;
  Filtration_value min_persistence;

  program_options(argc, argv, off_file_points, threshold, dim_max, p, min_persistence);

  Points_off_reader off_reader(off_file_points);

  // --------------------------------------------
  // Rips persistence
  // --------------------------------------------
  Rips_complex rips_complex(off_reader.get_point_cloud(), threshold, Gudhi::Euclidean_distance());

  // Construct the Rips complex in a Simplex Tree
  Simplex_tree rips_stree;

  rips_complex.create_complex(rips_stree, dim_max);
  std::cout << "The Rips complex contains " << rips_stree.num_simplices() << " simplices and has dimension "
            << rips_stree.dimension() << " \n";

  // Sort the simplices in the order of the filtration
  rips_stree.initialize_filtration();

  // Compute the persistence diagram of the complex
  Persistent_cohomology rips_pcoh(rips_stree);
  // initializes the coefficient field for homology
  rips_pcoh.init_coefficients(p);
  rips_pcoh.compute_persistent_cohomology(min_persistence);

  // rips_pcoh.output_diagram();

  // --------------------------------------------
  // Alpha persistence
  // --------------------------------------------
  Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex(off_reader.get_point_cloud());

  Simplex_tree alpha_stree;
  alpha_complex.create_complex(alpha_stree, threshold * threshold);
  std::cout << "The Alpha complex contains " << alpha_stree.num_simplices() << " simplices and has dimension "
            << alpha_stree.dimension() << " \n";

  // Sort the simplices in the order of the filtration
  alpha_stree.initialize_filtration();

  // Compute the persistence diagram of the complex
  Persistent_cohomology alpha_pcoh(alpha_stree);
  // initializes the coefficient field for homology
  alpha_pcoh.init_coefficients(p);
  alpha_pcoh.compute_persistent_cohomology(min_persistence * min_persistence);

  // alpha_pcoh.output_diagram();

  // --------------------------------------------
  // Bottleneck distance between both persistence
  // --------------------------------------------
  double max_b_distance {};
  for (int dim = 0; dim < dim_max; dim ++) {
    std::vector< std::pair< Filtration_value , Filtration_value > > rips_intervals;
    std::vector< std::pair< Filtration_value , Filtration_value > > alpha_intervals;
    rips_intervals = rips_pcoh.intervals_in_dimension(dim);
    alpha_intervals = alpha_pcoh.intervals_in_dimension(dim);
    std::transform(alpha_intervals.begin(), alpha_intervals.end(), alpha_intervals.begin(), compute_root_square);

    double bottleneck_distance = Gudhi::persistence_diagram::bottleneck_distance(rips_intervals, alpha_intervals);
    std::cout << "In dimension " << dim << ", bottleneck distance = " << bottleneck_distance << std::endl;
    if (bottleneck_distance > max_b_distance)
      max_b_distance = bottleneck_distance;
  }
  std::cout << "================================================================================" << std::endl;
  std::cout << "Bottleneck distance is " << max_b_distance << std::endl;

  return 0;
}

void program_options(int argc, char * argv[]
                     , std::string & off_file_points
                     , Filtration_value & threshold
                     , int & dim_max
                     , int & p
                     , Filtration_value & min_persistence) {
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()
      ("input-file", po::value<std::string>(&off_file_points),
       "Name of an OFF file containing a point set.\n");

  po::options_description visible("Allowed options", 100);
  visible.add_options()
      ("help,h", "produce help message")
      ("max-edge-length,r",
       po::value<Filtration_value>(&threshold)->default_value(std::numeric_limits<Filtration_value>::infinity()),
       "Maximal length of an edge for the Rips complex construction.")
      ("cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
       "Maximal dimension of the Rips complex we want to compute.")
      ("field-charac,p", po::value<int>(&p)->default_value(11),
       "Characteristic p of the coefficient field Z/pZ for computing homology.")
      ("min-persistence,m", po::value<Filtration_value>(&min_persistence),
       "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals");

  po::positional_options_description pos;
  pos.add("input-file", 1);

  po::options_description all;
  all.add(visible).add(hidden);

  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).
            options(all).positional(pos).run(), vm);
  po::notify(vm);

  if (vm.count("help") || !vm.count("input-file")) {
    std::cout << std::endl;
    std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::cout << "of a Rips complex defined on a set of input points.\n \n";
    std::cout << "The output diagram contains one bar per line, written with the convention: \n";
    std::cout << "   p   dim b d \n";
    std::cout << "where dim is the dimension of the homological feature,\n";
    std::cout << "b and d are respectively the birth and death of the feature and \n";
    std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;

    std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::cout << visible << std::endl;
    std::abort();
  }
}