summaryrefslogtreecommitdiff
path: root/include/gudhi/Graph_matching.h
blob: 313e7d9c5ab28d6d2d239decbbc981796b5e27ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author:       Francois Godi
 *
 *    Copyright (C) 2015 Inria
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef GRAPH_MATCHING_H_
#define GRAPH_MATCHING_H_

#include <gudhi/Neighbors_finder.h>

#include <vector>
#include <unordered_set>
#include <algorithm>

namespace Gudhi {

namespace persistence_diagram {

/** \internal \brief Structure representing a graph matching. The graph is a Persistence_diagrams_graph.
 *
 * \ingroup bottleneck_distance
 */
class Graph_matching {
 public:
  /** \internal \brief Constructor constructing an empty matching. */
  explicit Graph_matching(Persistence_graph &g);
  /** \internal \brief Is the matching perfect ? */
  bool perfect() const;
  /** \internal \brief Augments the matching with a maximal set of edge-disjoint shortest augmenting paths. */
  bool multi_augment();
  /** \internal \brief Sets the maximum length of the edges allowed to be added in the matching, 0 initially. */
  void set_r(double r);

 private:
  Persistence_graph* gp;
  double r;
  /** \internal \brief Given a point from V, provides its matched point in U, null_point_index() if there isn't. */
  std::vector<int> v_to_u;
  /** \internal \brief All the unmatched points in U. */
  std::unordered_set<int> unmatched_in_u;

  /** \internal \brief Provides a Layered_neighbors_finder dividing the graph in layers. Basically a BFS. */
  Layered_neighbors_finder layering() const;
  /** \internal \brief Augments the matching with a simple path no longer than max_depth. Basically a DFS. */
  bool augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth);
  /** \internal \brief Update the matching with the simple augmenting path given as parameter. */
  void update(std::vector<int> & path);
};

inline Graph_matching::Graph_matching(Persistence_graph& g)
    : gp(&g), r(0.), v_to_u(g.size(), null_point_index()), unmatched_in_u(g.size()) {
  for (int u_point_index = 0; u_point_index < g.size(); ++u_point_index)
    unmatched_in_u.insert(u_point_index);
}

inline bool Graph_matching::perfect() const {
  return unmatched_in_u.empty();
}

inline bool Graph_matching::multi_augment() {
  if (perfect())
    return false;
  Layered_neighbors_finder layered_nf(layering());
  int max_depth = layered_nf.vlayers_number()*2 - 1;
  double rn = sqrt(gp->size());
  // verification of a necessary criterion in order to shortcut if possible
  if (max_depth < 0 || (unmatched_in_u.size() > rn && max_depth >= rn))
    return false;
  bool successful = false;
  std::vector<int> tries(unmatched_in_u.cbegin(), unmatched_in_u.cend());
  for (auto it = tries.cbegin(); it != tries.cend(); it++)
    // 'augment' has side-effects which have to be always executed, don't change order
    successful = augment(layered_nf, *it, max_depth) || successful;
  return successful;
}

inline void Graph_matching::set_r(double r) {
  this->r = r;
}

inline bool Graph_matching::augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth) {
  // V vertices have at most one successor, thus when we backtrack from U we can directly pop_back 2 vertices.
  std::vector<int> path;
  path.emplace_back(u_start_index);
  do {
    if (static_cast<int> (path.size()) > max_depth) {
      path.pop_back();
      path.pop_back();
    }
    if (path.empty())
      return false;
    path.emplace_back(layered_nf.pull_near(path.back(), static_cast<int> (path.size()) / 2));
    while (path.back() == null_point_index()) {
      path.pop_back();
      path.pop_back();
      if (path.empty())
        return false;
      path.pop_back();
      path.emplace_back(layered_nf.pull_near(path.back(), path.size() / 2));
    }
    path.emplace_back(v_to_u.at(path.back()));
  } while (path.back() != null_point_index());
  // if v_to_u.at(path.back()) has no successor, path.back() is an exposed vertex
  path.pop_back();
  update(path);
  return true;
}

inline Layered_neighbors_finder Graph_matching::layering() const {
  std::vector<int> u_vertices(unmatched_in_u.cbegin(), unmatched_in_u.cend());
  std::vector<int> v_vertices;
  Neighbors_finder nf(*gp, r);
  for (int v_point_index = 0; v_point_index < gp->size(); ++v_point_index)
    nf.add(v_point_index);
  Layered_neighbors_finder layered_nf(*gp, r);
  for (int layer = 0; !u_vertices.empty(); layer++) {
    // one layer is one step in the BFS
    for (auto it1 = u_vertices.cbegin(); it1 != u_vertices.cend(); ++it1) {
      std::vector<int> u_succ(nf.pull_all_near(*it1));
      for (auto it2 = u_succ.begin(); it2 != u_succ.end(); ++it2) {
        layered_nf.add(*it2, layer);
        v_vertices.emplace_back(*it2);
      }
    }
    // When the above for finishes, we have progress of one half-step (from U to V) in the BFS
    u_vertices.clear();
    bool end = false;
    for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++)
      if (v_to_u.at(*it) == null_point_index())
        // we stop when a nearest exposed V vertex (from U exposed vertices) has been found
        end = true;
      else
        u_vertices.emplace_back(v_to_u.at(*it));
    // When the above for finishes, we have progress of one half-step (from V to U) in the BFS
    if (end)
      return layered_nf;
    v_vertices.clear();
  }
  return layered_nf;
}

inline void Graph_matching::update(std::vector<int>& path) {
  // Must return 1.
  unmatched_in_u.erase(path.front());
  for (auto it = path.cbegin(); it != path.cend(); ++it) {
    // Be careful, the iterator is incremented twice each time
    int tmp = *it;
    v_to_u[*(++it)] = tmp;
  }
}


}  // namespace persistence_diagram

}  // namespace Gudhi

#endif  // GRAPH_MATCHING_H_