summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/test/Alpha_complex_unit_test.cpp
blob: f64a8ea94856b02798202315935150444fac6ae4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2015  INRIA Saclay (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "alpha_complex"
#include <boost/test/unit_test.hpp>

#include <CGAL/Delaunay_triangulation.h>
#include <CGAL/Epick_d.h>

#include <cmath>  // float comparison
#include <limits>
#include <string>
#include <vector>

// to construct a Delaunay_triangulation from a OFF file
#include <gudhi/Delaunay_triangulation_off_io.h>
#include <gudhi/Alpha_complex.h>

// Use dynamic_dimension_tag for the user to be able to set dimension
typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Kernel_d;
// The triangulation uses the default instantiation of the TriangulationDataStructure template parameter

BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file) {
  // ----------------------------------------------------------------------------
  //
  // Init of an alpha-complex from a OFF file
  //
  // ----------------------------------------------------------------------------
  std::string off_file_name("alphacomplexdoc.off");
  double max_alpha_square_value = 60.0;
  std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" <<
      max_alpha_square_value << "==========" << std::endl;

  Gudhi::alphacomplex::Alpha_complex<Kernel_d> alpha_complex_from_file(off_file_name, max_alpha_square_value);

  const int DIMENSION = 2;
  std::cout << "alpha_complex_from_file.dimension()=" << alpha_complex_from_file.dimension() << std::endl;
  BOOST_CHECK(alpha_complex_from_file.dimension() == DIMENSION);

  const int NUMBER_OF_VERTICES = 7;
  std::cout << "alpha_complex_from_file.num_vertices()=" << alpha_complex_from_file.num_vertices() << std::endl;
  BOOST_CHECK(alpha_complex_from_file.num_vertices() == NUMBER_OF_VERTICES);

  const int NUMBER_OF_SIMPLICES = 25;
  std::cout << "alpha_complex_from_file.num_simplices()=" << alpha_complex_from_file.num_simplices() << std::endl;
  BOOST_CHECK(alpha_complex_from_file.num_simplices() == NUMBER_OF_SIMPLICES);

}

BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file_filtered) {
  // ----------------------------------------------------------------------------
  //
  // Init of an alpha-complex from a OFF file
  //
  // ----------------------------------------------------------------------------
  std::string off_file_name("alphacomplexdoc.off");
  double max_alpha_square_value = 59.0;
  std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" <<
      max_alpha_square_value << "==========" << std::endl;

  Gudhi::alphacomplex::Alpha_complex<Kernel_d> alpha_complex_from_file(off_file_name, max_alpha_square_value);

  const int DIMENSION = 2;
  std::cout << "alpha_complex_from_file.dimension()=" << alpha_complex_from_file.dimension() << std::endl;
  BOOST_CHECK(alpha_complex_from_file.dimension() == DIMENSION);

  const int NUMBER_OF_VERTICES = 7;
  std::cout << "alpha_complex_from_file.num_vertices()=" << alpha_complex_from_file.num_vertices() << std::endl;
  BOOST_CHECK(alpha_complex_from_file.num_vertices() == NUMBER_OF_VERTICES);

  const int NUMBER_OF_SIMPLICES = 25;
  std::cout << "alpha_complex_from_file.num_simplices()=" << alpha_complex_from_file.num_simplices() << std::endl;
  BOOST_CHECK(alpha_complex_from_file.num_simplices() == NUMBER_OF_SIMPLICES);

  int num_filtered_simplices = 0;
  for (auto f_simplex : alpha_complex_from_file.filtration_simplex_range()) {
    if (alpha_complex_from_file.filtration(f_simplex) <= alpha_complex_from_file.filtration()) {
      num_filtered_simplices++;
    }
  }
  const int NUMBER_OF_FILTERED_SIMPLICES = 23;
  std::cout << "num_filtered_simplices=" << num_filtered_simplices << std::endl;
  BOOST_CHECK(num_filtered_simplices == NUMBER_OF_FILTERED_SIMPLICES);

}

bool are_almost_the_same(float a, float b) {
  return std::fabs(a - b) < std::numeric_limits<float>::epsilon();
}

// Use dynamic_dimension_tag for the user to be able to set dimension
typedef CGAL::Epick_d< CGAL::Dimension_tag<4> > Kernel_s;
typedef Kernel_s::Point_d Point;
typedef std::vector<Point> Vector_of_points;


bool is_point_in_list(Vector_of_points points_list, Point point) {
  for (auto& point_in_list : points_list) {
    if (point_in_list == point) {
      return true;  // point found
    }
  }
  return false;  // point not found
}

BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) {
  // ----------------------------------------------------------------------------
  // Init of a list of points
  // ----------------------------------------------------------------------------
  Vector_of_points points;
  std::vector<double> coords = { 0.0, 0.0, 0.0, 1.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 0.0, 0.0, 1.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 0.0, 1.0, 0.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 1.0, 0.0, 0.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));

  // ----------------------------------------------------------------------------
  // Init of an alpha complex from the list of points
  // ----------------------------------------------------------------------------
  double max_alpha_square_value = 1e10;
  Gudhi::alphacomplex::Alpha_complex<Kernel_s> alpha_complex_from_points(points, max_alpha_square_value);

  std::cout << "========== Alpha_complex_from_points ==========" << std::endl;

  // Another way to check num_simplices
  std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
  int num_simplices = 0;
  for (auto f_simplex : alpha_complex_from_points.filtration_simplex_range()) {
    num_simplices++;
    std::cout << "   ( ";
    for (auto vertex : alpha_complex_from_points.simplex_vertex_range(f_simplex)) {
      std::cout << vertex << " ";
    }
    std::cout << ") -> " << "[" << alpha_complex_from_points.filtration(f_simplex) << "] ";
    std::cout << std::endl;
  }
  BOOST_CHECK(num_simplices == 15);
  std::cout << "alpha_complex_from_points.num_simplices()=" << alpha_complex_from_points.num_simplices() << std::endl;
  BOOST_CHECK(alpha_complex_from_points.num_simplices() == 15);

  std::cout << "alpha_complex_from_points.dimension()=" << alpha_complex_from_points.dimension() << std::endl;
  BOOST_CHECK(alpha_complex_from_points.dimension() == 4);
  std::cout << "alpha_complex_from_points.num_vertices()=" << alpha_complex_from_points.num_vertices() << std::endl;
  BOOST_CHECK(alpha_complex_from_points.num_vertices() == 4);

  for (auto f_simplex : alpha_complex_from_points.filtration_simplex_range()) {
    switch (alpha_complex_from_points.dimension(f_simplex)) {
      case 0:
        BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 0.0));
        break;
      case 1:
        BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 1.0/2.0));
        break;
      case 2:
        BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 2.0/3.0));
        break;
      case 3:
        BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 3.0/4.0));
        break;
      default:
        BOOST_CHECK(false);  // Shall not happen
        break;
    }
  }

  Point p0 = alpha_complex_from_points.get_point(0);
  std::cout << "alpha_complex_from_points.get_point(0)=" << p0 << std::endl;
  BOOST_CHECK(4 == p0.dimension());
  BOOST_CHECK(is_point_in_list(points, p0));

  Point p1 = alpha_complex_from_points.get_point(1);
  std::cout << "alpha_complex_from_points.get_point(1)=" << p1 << std::endl;
  BOOST_CHECK(4 == p1.dimension());
  BOOST_CHECK(is_point_in_list(points, p1));

  Point p2 = alpha_complex_from_points.get_point(2);
  std::cout << "alpha_complex_from_points.get_point(2)=" << p2 << std::endl;
  BOOST_CHECK(4 == p2.dimension());
  BOOST_CHECK(is_point_in_list(points, p2));

  Point p3 = alpha_complex_from_points.get_point(3);
  std::cout << "alpha_complex_from_points.get_point(3)=" << p3 << std::endl;
  BOOST_CHECK(4 == p3.dimension());
  BOOST_CHECK(is_point_in_list(points, p3));

  // Test to the limit
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(4), std::out_of_range);
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(-1), std::out_of_range);
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(1234), std::out_of_range);
}