summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/test/Alpha_complex_unit_test.cpp
blob: 27b671dde8db0d90c54da79913ec94ccff1a6e46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2015 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "alpha_complex"
#include <boost/test/unit_test.hpp>
#include <boost/mpl/list.hpp>

#include <CGAL/Delaunay_triangulation.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Epeck_d.h>

#include <cmath>  // float comparison
#include <limits>
#include <string>
#include <vector>

#include <gudhi/Alpha_complex.h>
// to construct a simplex_tree from Delaunay_triangulation
#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Unitary_tests_utils.h>

// Use dynamic_dimension_tag for the user to be able to set dimension
typedef CGAL::Epeck_d< CGAL::Dynamic_dimension_tag > Exact_kernel_d;
// Use static dimension_tag for the user not to be able to set dimension
typedef CGAL::Epeck_d< CGAL::Dimension_tag<3> > Exact_kernel_s;
// Use dynamic_dimension_tag for the user to be able to set dimension
typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Inexact_kernel_d;
// Use static dimension_tag for the user not to be able to set dimension
typedef CGAL::Epick_d< CGAL::Dimension_tag<3> > Inexact_kernel_s;
// The triangulation uses the default instantiation of the TriangulationDataStructure template parameter

typedef boost::mpl::list<Exact_kernel_d, Exact_kernel_s, Inexact_kernel_d, Inexact_kernel_s> list_of_kernel_variants;

BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_from_OFF_file, TestedKernel, list_of_kernel_variants) {
  // ----------------------------------------------------------------------------
  //
  // Init of an alpha-complex from a OFF file
  //
  // ----------------------------------------------------------------------------
  std::string off_file_name("alphacomplexdoc.off");
  double max_alpha_square_value = 60.0;
  std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" <<
      max_alpha_square_value << "==========" << std::endl;

  Gudhi::alpha_complex::Alpha_complex<TestedKernel> alpha_complex_from_file(off_file_name);

  Gudhi::Simplex_tree<> simplex_tree_60;
  BOOST_CHECK(alpha_complex_from_file.create_complex(simplex_tree_60, max_alpha_square_value));

  std::cout << "simplex_tree_60.dimension()=" << simplex_tree_60.dimension() << std::endl;
  BOOST_CHECK(simplex_tree_60.dimension() == 2);

  std::cout << "simplex_tree_60.num_vertices()=" << simplex_tree_60.num_vertices() << std::endl;
  BOOST_CHECK(simplex_tree_60.num_vertices() == 7);

  std::cout << "simplex_tree_60.num_simplices()=" << simplex_tree_60.num_simplices() << std::endl;
  BOOST_CHECK(simplex_tree_60.num_simplices() == 25);

  max_alpha_square_value = 59.0;
  std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" <<
      max_alpha_square_value << "==========" << std::endl;

  Gudhi::Simplex_tree<> simplex_tree_59;
  BOOST_CHECK(alpha_complex_from_file.create_complex(simplex_tree_59, max_alpha_square_value));
  
  std::cout << "simplex_tree_59.dimension()=" << simplex_tree_59.dimension() << std::endl;
  BOOST_CHECK(simplex_tree_59.dimension() == 2);

  std::cout << "simplex_tree_59.num_vertices()=" << simplex_tree_59.num_vertices() << std::endl;
  BOOST_CHECK(simplex_tree_59.num_vertices() == 7);

  std::cout << "simplex_tree_59.num_simplices()=" << simplex_tree_59.num_simplices() << std::endl;
  BOOST_CHECK(simplex_tree_59.num_simplices() == 23);
}

// Use static dimension_tag for the user not to be able to set dimension
typedef CGAL::Epeck_d< CGAL::Dimension_tag<4> > Kernel_4;
typedef Kernel_4::Point_d Point_4;
typedef std::vector<Point_4> Vector_4_Points;

bool is_point_in_list(Vector_4_Points points_list, Point_4 point) {
  for (auto& point_in_list : points_list) {
    if (point_in_list == point) {
      return true;  // point found
    }
  }
  return false;  // point not found
}

BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) {
  // ----------------------------------------------------------------------------
  // Init of a list of points
  // ----------------------------------------------------------------------------
  Vector_4_Points points;
  std::vector<double> coords = { 0.0, 0.0, 0.0, 1.0 };
  points.push_back(Point_4(coords.begin(), coords.end()));
  coords = { 0.0, 0.0, 1.0, 0.0 };
  points.push_back(Point_4(coords.begin(), coords.end()));
  coords = { 0.0, 1.0, 0.0, 0.0 };
  points.push_back(Point_4(coords.begin(), coords.end()));
  coords = { 1.0, 0.0, 0.0, 0.0 };
  points.push_back(Point_4(coords.begin(), coords.end()));

  // ----------------------------------------------------------------------------
  // Init of an alpha complex from the list of points
  // ----------------------------------------------------------------------------
  Gudhi::alpha_complex::Alpha_complex<Kernel_4> alpha_complex_from_points(points);

  std::cout << "========== Alpha_complex_from_points ==========" << std::endl;

  Gudhi::Simplex_tree<> simplex_tree;
  BOOST_CHECK(alpha_complex_from_points.create_complex(simplex_tree));
  
  // Another way to check num_simplices
  std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
  int num_simplices = 0;
  for (auto f_simplex : simplex_tree.filtration_simplex_range()) {
    num_simplices++;
    std::cout << "   ( ";
    for (auto vertex : simplex_tree.simplex_vertex_range(f_simplex)) {
      std::cout << vertex << " ";
    }
    std::cout << ") -> " << "[" << simplex_tree.filtration(f_simplex) << "] ";
    std::cout << std::endl;
  }
  BOOST_CHECK(num_simplices == 15);
  std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl;
  BOOST_CHECK(simplex_tree.num_simplices() == 15);

  std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl;
  BOOST_CHECK(simplex_tree.dimension() == 3);
  std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl;
  BOOST_CHECK(simplex_tree.num_vertices() == points.size());

  for (auto f_simplex : simplex_tree.filtration_simplex_range()) {
    switch (simplex_tree.dimension(f_simplex)) {
      case 0:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 0.0);
        break;
      case 1:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 1.0/2.0);
        break;
      case 2:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 2.0/3.0);
        break;
      case 3:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 3.0/4.0);
        break;
      default:
        BOOST_CHECK(false);  // Shall not happen
        break;
    }
  }

  Point_4 p0 = alpha_complex_from_points.get_point(0);
  std::cout << "alpha_complex_from_points.get_point(0)=" << p0 << std::endl;
  BOOST_CHECK(4 == p0.dimension());
  BOOST_CHECK(is_point_in_list(points, p0));

  Point_4 p1 = alpha_complex_from_points.get_point(1);
  std::cout << "alpha_complex_from_points.get_point(1)=" << p1 << std::endl;
  BOOST_CHECK(4 == p1.dimension());
  BOOST_CHECK(is_point_in_list(points, p1));

  Point_4 p2 = alpha_complex_from_points.get_point(2);
  std::cout << "alpha_complex_from_points.get_point(2)=" << p2 << std::endl;
  BOOST_CHECK(4 == p2.dimension());
  BOOST_CHECK(is_point_in_list(points, p2));

  Point_4 p3 = alpha_complex_from_points.get_point(3);
  std::cout << "alpha_complex_from_points.get_point(3)=" << p3 << std::endl;
  BOOST_CHECK(4 == p3.dimension());
  BOOST_CHECK(is_point_in_list(points, p3));

  // Test to the limit
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(4), std::out_of_range);
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(-1), std::out_of_range);
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(1234), std::out_of_range);
  
  // Test after prune_above_filtration
  bool modified = simplex_tree.prune_above_filtration(0.6);
  if (modified) {
    simplex_tree.initialize_filtration();
  }
  BOOST_CHECK(modified);
  
  // Another way to check num_simplices
  std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
  num_simplices = 0;
  for (auto f_simplex : simplex_tree.filtration_simplex_range()) {
    num_simplices++;
    std::cout << "   ( ";
    for (auto vertex : simplex_tree.simplex_vertex_range(f_simplex)) {
      std::cout << vertex << " ";
    }
    std::cout << ") -> " << "[" << simplex_tree.filtration(f_simplex) << "] ";
    std::cout << std::endl;
  }
  BOOST_CHECK(num_simplices == 10);
  std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl;
  BOOST_CHECK(simplex_tree.num_simplices() == 10);

  std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl;
  BOOST_CHECK(simplex_tree.dimension() == 1);
  std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl;
  BOOST_CHECK(simplex_tree.num_vertices() == 4);

  for (auto f_simplex : simplex_tree.filtration_simplex_range()) {
    switch (simplex_tree.dimension(f_simplex)) {
      case 0:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 0.0);
        break;
      case 1:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(simplex_tree.filtration(f_simplex), 1.0/2.0);
        break;
      default:
        BOOST_CHECK(false);  // Shall not happen
        break;
    }
  }

}

BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_from_empty_points, TestedKernel, list_of_kernel_variants) {
  std::cout << "========== Alpha_complex_from_empty_points ==========" << std::endl;

  // ----------------------------------------------------------------------------
  // Init of an empty list of points
  // ----------------------------------------------------------------------------
  std::vector<typename TestedKernel::Point_d> points;

  // ----------------------------------------------------------------------------
  // Init of an alpha complex from the list of points
  // ----------------------------------------------------------------------------
  Gudhi::alpha_complex::Alpha_complex<TestedKernel> alpha_complex_from_points(points);

  // Test to the limit
  BOOST_CHECK_THROW (alpha_complex_from_points.get_point(0), std::out_of_range);

  Gudhi::Simplex_tree<> simplex_tree;
  BOOST_CHECK(!alpha_complex_from_points.create_complex(simplex_tree));
  
  std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl;
  BOOST_CHECK(simplex_tree.num_simplices() == 0);

  std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl;
  BOOST_CHECK(simplex_tree.dimension() == -1);
  
  std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl;
  BOOST_CHECK(simplex_tree.num_vertices() == points.size());
}

using Inexact_kernel_2 = CGAL::Epick_d< CGAL::Dimension_tag<2> >;
using Exact_kernel_2 = CGAL::Epeck_d< CGAL::Dimension_tag<2> >;
using list_of_kernel_2_variants = boost::mpl::list<Inexact_kernel_2, Exact_kernel_2>;

BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_with_duplicated_points, TestedKernel, list_of_kernel_2_variants) {
  std::cout << "========== Alpha_complex_with_duplicated_points ==========" << std::endl;

  using Point = typename TestedKernel::Point_d;
  using Vector_of_points = std::vector<Point>;

  // ----------------------------------------------------------------------------
  // Init of a list of points
  // ----------------------------------------------------------------------------
  Vector_of_points points;
  points.push_back(Point(1.0, 1.0));
  points.push_back(Point(7.0, 0.0));
  points.push_back(Point(4.0, 6.0));
  points.push_back(Point(9.0, 6.0));
  points.push_back(Point(0.0, 14.0));
  points.push_back(Point(2.0, 19.0));
  points.push_back(Point(9.0, 17.0));
  // duplicated points
  points.push_back(Point(1.0, 1.0));
  points.push_back(Point(7.0, 0.0));

  // ----------------------------------------------------------------------------
  // Init of an alpha complex from the list of points
  // ----------------------------------------------------------------------------
  std::cout << "Init" << std::endl;
  Gudhi::alpha_complex::Alpha_complex<TestedKernel> alpha_complex_from_points(points);

  Gudhi::Simplex_tree<> simplex_tree;
  std::cout << "create_complex" << std::endl;
  BOOST_CHECK(alpha_complex_from_points.create_complex(simplex_tree));
  
  std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices()
      << std::endl;
  BOOST_CHECK(simplex_tree.num_vertices() < points.size());
}