summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/test/Weighted_alpha_complex_unit_test.cpp
blob: d267276c07e340ea6fdd0338a4bbd0031a047a9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2020 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "weighted_alpha_complex"
#include <boost/test/unit_test.hpp>
#include <boost/mpl/list.hpp>

#include <CGAL/Epick_d.h>
#include <CGAL/Epeck_d.h>

#include <cmath>  // float comparison
#include <vector>
#include <random>
#include <array>
#include <cmath> // for std::fabs

#include <gudhi/Alpha_complex.h>
#include <gudhi/Alpha_complex_3d.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Unitary_tests_utils.h>

using list_of_exact_kernel_variants = boost::mpl::list<CGAL::Epeck_d< CGAL::Dynamic_dimension_tag >,
                                                       CGAL::Epeck_d< CGAL::Dimension_tag<4> >
                                                       > ;

BOOST_AUTO_TEST_CASE_TEMPLATE(Zero_weighted_alpha_complex, Kernel, list_of_exact_kernel_variants) {
  // Check that in exact mode for static dimension 4 the code for dD unweighted and for dD weighted with all weights
  // 0 give exactly the same simplex tree (simplices and filtration values).

  // Random points construction
  using Point_d = typename Kernel::Point_d;
  std::vector<Point_d> points;
  std::uniform_real_distribution<double> rd_pts(-10., 10.);
  std::random_device rand_dev;
  std::mt19937 rand_engine(rand_dev());
  for (int idx = 0; idx < 20; idx++) {
    std::vector<double> point {rd_pts(rand_engine), rd_pts(rand_engine), rd_pts(rand_engine), rd_pts(rand_engine)};
    points.emplace_back(point.begin(), point.end());
  }
  
  // Alpha complex from points
  Gudhi::alpha_complex::Alpha_complex<Kernel, false> alpha_complex_from_points(points);
  Gudhi::Simplex_tree<> simplex;
  Gudhi::Simplex_tree<>::Filtration_value infty = std::numeric_limits<Gudhi::Simplex_tree<>::Filtration_value>::infinity();
  BOOST_CHECK(alpha_complex_from_points.create_complex(simplex, infty, true));
  std::clog << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:"
            << std::endl;
  for (auto f_simplex : simplex.filtration_simplex_range()) {
    std::clog << "   ( ";
    for (auto vertex : simplex.simplex_vertex_range(f_simplex)) {
      std::clog << vertex << " ";
    }
    std::clog << ") -> " << "[" << simplex.filtration(f_simplex) << "] " << std::endl;
  }

  // Alpha complex from zero weighted points
  std::vector<typename Kernel::FT> weights(20, 0.);
  Gudhi::alpha_complex::Alpha_complex<Kernel, true> alpha_complex_from_zero_weighted_points(points, weights);
  Gudhi::Simplex_tree<> zw_simplex;
  BOOST_CHECK(alpha_complex_from_zero_weighted_points.create_complex(zw_simplex, infty, true));

  std::clog << "Iterator on zero weighted alpha complex simplices in the filtration order, with [filtration value]:"
            << std::endl;
  for (auto f_simplex : zw_simplex.filtration_simplex_range()) {
    std::clog << "   ( ";
    for (auto vertex : zw_simplex.simplex_vertex_range(f_simplex)) {
      std::clog << vertex << " ";
    }
    std::clog << ") -> " << "[" << zw_simplex.filtration(f_simplex) << "] " << std::endl;
  }

  BOOST_CHECK(zw_simplex == simplex);
}

template <typename Point_d>
bool cgal_3d_point_sort (Point_d a,Point_d b) {
  if (a[0] != b[0])
    return a[0] < b[0];
  if (a[1] != b[1])
    return a[1] < b[1];
  return a[2] < b[2];
}

BOOST_AUTO_TEST_CASE(Weighted_alpha_complex_3d_comparison) {
  // check that for random weighted 3d points in safe mode the 3D and dD codes give the same result with some tolerance

  // Random points construction
  using Kernel_dD = CGAL::Epeck_d< CGAL::Dimension_tag<3> >;
  using Bare_point_d = typename Kernel_dD::Point_d;
  using Weighted_point_d = typename Kernel_dD::Weighted_point_d;
  std::vector<Weighted_point_d> w_points_d;

  using Exact_weighted_alpha_complex_3d =
    Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, false>;
  using Bare_point_3 = typename Exact_weighted_alpha_complex_3d::Bare_point_3;
  using Weighted_point_3 = typename Exact_weighted_alpha_complex_3d::Weighted_point_3;
  std::vector<Weighted_point_3> w_points_3;

  std::uniform_real_distribution<double> rd_pts(-10., 10.);
  std::uniform_real_distribution<double> rd_wghts(-0.5, 0.5);
  std::random_device rand_dev;
  std::mt19937 rand_engine(rand_dev());
  for (int idx = 0; idx < 20; idx++) {
    std::vector<double> point {rd_pts(rand_engine), rd_pts(rand_engine), rd_pts(rand_engine)};
    double weight = rd_wghts(rand_engine);
    w_points_d.emplace_back(Bare_point_d(point.begin(), point.end()), weight);
    w_points_3.emplace_back(Bare_point_3(point[0], point[1], point[2]), weight);
  }

  // Structures necessary for comparison
  using Points = std::vector<std::array<double,3>>;
  using Points_and_filtrations = std::map<Points, double>;
  Points_and_filtrations pts_fltr_dD;
  Points_and_filtrations pts_fltr_3d;

  // Weighted alpha complex for dD version
  Gudhi::alpha_complex::Alpha_complex<Kernel_dD, true> alpha_complex_dD_from_weighted_points(w_points_d);
  Gudhi::Simplex_tree<> w_simplex_d;
  BOOST_CHECK(alpha_complex_dD_from_weighted_points.create_complex(w_simplex_d));

  std::clog << "Iterator on weighted alpha complex dD simplices in the filtration order, with [filtration value]:"
            << std::endl;
  for (auto f_simplex : w_simplex_d.filtration_simplex_range()) {
    Points points;
    for (auto vertex : w_simplex_d.simplex_vertex_range(f_simplex)) {
      CGAL::NT_converter<Kernel_dD::RT, double> cgal_converter;
      Bare_point_d pt = alpha_complex_dD_from_weighted_points.get_point(vertex).point();
      points.push_back({cgal_converter(pt[0]), cgal_converter(pt[1]), cgal_converter(pt[2])});
    }
    std::clog << "   ( ";
    std::sort (points.begin(), points.end());
    for (auto point : points) {
      std::clog << point[0] << " " << point[1] << " " << point[2] << " | ";
    }
    std::clog << ") -> " << "[" << w_simplex_d.filtration(f_simplex) << "] ";
    std::clog << std::endl;
    pts_fltr_dD[points] = w_simplex_d.filtration(f_simplex);
  }

  // Weighted alpha complex for 3D version
  Exact_weighted_alpha_complex_3d alpha_complex_3D_from_weighted_points(w_points_3);
  Gudhi::Simplex_tree<> w_simplex_3;
  BOOST_CHECK(alpha_complex_3D_from_weighted_points.create_complex(w_simplex_3));

  std::clog << "Iterator on weighted alpha complex 3D simplices in the filtration order, with [filtration value]:"
            << std::endl;
  for (auto f_simplex : w_simplex_3.filtration_simplex_range()) {
    Points points;
    for (auto vertex : w_simplex_3.simplex_vertex_range(f_simplex)) {
      Bare_point_3 pt = alpha_complex_3D_from_weighted_points.get_point(vertex).point();
      CGAL::NT_converter<Exact_weighted_alpha_complex_3d::Kernel::RT, double> cgal_converter;
      points.push_back({cgal_converter(pt[0]), cgal_converter(pt[1]), cgal_converter(pt[2])});
    }
    std::clog << "   ( ";
    std::sort (points.begin(), points.end());
    for (auto point : points) {
      std::clog << point[0] << " " << point[1] << " " << point[2] << " | ";
    }
    std::clog << ") -> " << "[" << w_simplex_3.filtration(f_simplex) << "] " << std::endl;
    pts_fltr_3d[points] = w_simplex_d.filtration(f_simplex);
  }

  // Compares structures
  auto d3_itr = pts_fltr_3d.begin();
  auto dD_itr = pts_fltr_dD.begin();
  for (; d3_itr != pts_fltr_3d.end() && dD_itr != pts_fltr_dD.end(); ++d3_itr) {
    if (d3_itr->first != dD_itr->first) {
      for(auto point : d3_itr->first)
        std::clog << point[0] << " " << point[1] << " " << point[2] << " | ";
      std::clog << " versus ";
      for(auto point : dD_itr->first)
        std::clog << point[0] << " " << point[1] << " " << point[2] << " | ";
      std::clog << std::endl;
      BOOST_CHECK(false);
    }
    // In safe mode, relative error is less than 1e-5 (can be changed with set_relative_precision_of_to_double)
    if (std::fabs(d3_itr->second - dD_itr->second) > 1e-5 * (std::fabs(d3_itr->second) + std::fabs(dD_itr->second))) {
      std::clog << d3_itr->second << " versus " << dD_itr->second << " diff "
                << std::fabs(d3_itr->second - dD_itr->second) << std::endl;
      BOOST_CHECK(false);
    }
    ++dD_itr;
  }
}

using list_of_1d_kernel_variants = boost::mpl::list<CGAL::Epeck_d< CGAL::Dynamic_dimension_tag >,
                                                    CGAL::Epeck_d< CGAL::Dimension_tag<1>>,
                                                    CGAL::Epick_d< CGAL::Dynamic_dimension_tag >,
                                                    CGAL::Epick_d< CGAL::Dimension_tag<1>>
                                                    >;

BOOST_AUTO_TEST_CASE_TEMPLATE(Weighted_alpha_complex_non_visible_points, Kernel, list_of_1d_kernel_variants) {
  // check that for 2 closed weighted 1-d points, one with a high weight to hide the second one with a small weight,
  // that the point with a small weight has the same high filtration value than the edge formed by the 2 points
  using Point_d = typename Kernel::Point_d;
  std::vector<Point_d> points;
  std::vector<double> p1 {0.};
  points.emplace_back(p1.begin(), p1.end());
  // closed enough points
  std::vector<double> p2 {0.1};
  points.emplace_back(p2.begin(), p2.end());
  std::vector<typename Kernel::FT> weights {100., 0.01};

  Gudhi::alpha_complex::Alpha_complex<Kernel, true> alpha_complex(points, weights);
  Gudhi::Simplex_tree<> stree;
  BOOST_CHECK(alpha_complex.create_complex(stree));

  std::clog << "Iterator on weighted alpha complex simplices in the filtration order, with [filtration value]:"
            << std::endl;
  for (auto f_simplex : stree.filtration_simplex_range()) {
    std::clog << "   ( ";
    for (auto vertex : stree.simplex_vertex_range(f_simplex)) {
      std::clog << vertex << " ";
    }
    std::clog << ") -> " << "[" << stree.filtration(f_simplex) << "] " << std::endl;
  }

  BOOST_CHECK(stree.filtration(stree.find({0})) == -100.);
  BOOST_CHECK(stree.filtration(stree.find({1})) == stree.filtration(stree.find({0, 1})));
  BOOST_CHECK(stree.filtration(stree.find({1})) > 100000);
}