summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/utilities/alpha_complex_3d_persistence.cpp
blob: 91899040b85e14003bcd53d1b705f4491fe377f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2014 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#include <boost/program_options.hpp>
#include <boost/variant.hpp>

#include <gudhi/Alpha_complex_3d.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Points_3D_off_io.h>

#include <fstream>
#include <string>
#include <vector>
#include <limits>  // for numeric_limits<>

// gudhi type definition
using Simplex_tree = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
using Filtration_value = Simplex_tree::Filtration_value;
using Persistent_cohomology =
    Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Gudhi::persistent_cohomology::Field_Zp>;

void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &safe,
                     std::string &weight_file, std::string &cuboid_file, std::string &output_file_diag,
                     Filtration_value &alpha_square_max_value, int &coeff_field_characteristic,
                     Filtration_value &min_persistence);

bool read_weight_file(const std::string &weight_file, std::vector<double> &weights) {
  // Read weights information from file
  std::ifstream weights_ifstr(weight_file);
  if (weights_ifstr.good()) {
    double weight = 0.0;
    // Attempt read the weight in a double format, return false if it fails
    while (weights_ifstr >> weight) {
      weights.push_back(weight);
    }
  } else {
    return false;
  }
  return true;
}

bool read_cuboid_file(const std::string &cuboid_file, double &x_min, double &y_min, double &z_min, double &x_max,
                      double &y_max, double &z_max) {
  // Read weights information from file
  std::ifstream iso_cuboid_str(cuboid_file);
  if (iso_cuboid_str.is_open()) {
    if (!(iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max)) {
      return false;
    }
  } else {
    return false;
  }
  return true;
}

template <typename AlphaComplex3d>
std::vector<typename AlphaComplex3d::Bare_point_3> read_off(const std::string &off_file_points) {
  // Read the OFF file (input file name given as parameter) and triangulate points
  Gudhi::Points_3D_off_reader<typename AlphaComplex3d::Bare_point_3> off_reader(off_file_points);
  // Check the read operation was correct
  if (!off_reader.is_valid()) {
    std::cerr << "Unable to read OFF file " << off_file_points << std::endl;
    exit(-1);
  }
  return off_reader.get_point_cloud();
}

int main(int argc, char **argv) {
  std::string off_file_points;
  std::string weight_file;
  std::string cuboid_file;
  std::string output_file_diag;
  Filtration_value alpha_square_max_value = 0.;
  int coeff_field_characteristic = 0;
  Filtration_value min_persistence = 0.;
  bool exact_version = false;
  bool fast_version = false;
  bool weighted_version = false;
  bool periodic_version = false;

  program_options(argc, argv, off_file_points, exact_version, fast_version, weight_file, cuboid_file, output_file_diag,
                  alpha_square_max_value, coeff_field_characteristic, min_persistence);

  std::vector<double> weights;
  if (weight_file != std::string()) {
    if (!read_weight_file(weight_file, weights)) {
      std::cerr << "Unable to read weights file " << weight_file << std::endl;
      exit(-1);
    }
    weighted_version = true;
  }

  double x_min = 0., y_min = 0., z_min = 0., x_max = 0., y_max = 0., z_max = 0.;
  std::ifstream iso_cuboid_str(argv[3]);
  if (cuboid_file != std::string()) {
    if (!read_cuboid_file(cuboid_file, x_min, y_min, z_min, x_max, y_max, z_max)) {
      std::cerr << "Unable to read cuboid file " << cuboid_file << std::endl;
      exit(-1);
    }
    periodic_version = true;
  }

  Gudhi::alpha_complex::complexity complexity = Gudhi::alpha_complex::complexity::SAFE;
  if (exact_version) {
    if (fast_version) {
      std::cerr << "You cannot set the exact and the fast version." << std::endl;
      exit(-1);
    }
    complexity = Gudhi::alpha_complex::complexity::EXACT;
  }
  if (fast_version) {
    complexity = Gudhi::alpha_complex::complexity::FAST;
  }

  Simplex_tree simplex_tree;

  switch (complexity) {
    case Gudhi::alpha_complex::complexity::FAST:
      if (weighted_version) {
        if (periodic_version) {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, true>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        } else {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, false>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, weights);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        }
      } else {
        if (periodic_version) {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, true>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        } else {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, false>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        }
      }
      break;
    case Gudhi::alpha_complex::complexity::EXACT:
      if (weighted_version) {
        if (periodic_version) {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, true>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        } else {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, false>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, weights);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        }
      } else {
        if (periodic_version) {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, true>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        } else {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, false>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        }
      }
      break;
    case Gudhi::alpha_complex::complexity::SAFE:
      if (weighted_version) {
        if (periodic_version) {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, true>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        } else {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, false>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, weights);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        }
      } else {
        if (periodic_version) {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, true>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        } else {
          using Alpha_complex_3d =
              Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, false>;
          auto points = read_off<Alpha_complex_3d>(off_file_points);
          Alpha_complex_3d alpha_complex(points);
          alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
        }
      }
      break;
    default:
      std::cerr << "Unknown complexity value " << std::endl;
      exit(-1);
      break;
  }

  std::clog << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
  // Compute the persistence diagram of the complex
  Persistent_cohomology pcoh(simplex_tree, true);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(coeff_field_characteristic);

  pcoh.compute_persistent_cohomology(min_persistence);

  // Output the diagram in filediag
  if (output_file_diag.empty()) {
    pcoh.output_diagram();
  } else {
    std::clog << "Result in file: " << output_file_diag << std::endl;
    std::ofstream out(output_file_diag);
    pcoh.output_diagram(out);
    out.close();
  }

  return 0;
}

void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &fast,
                     std::string &weight_file, std::string &cuboid_file, std::string &output_file_diag,
                     Filtration_value &alpha_square_max_value, int &coeff_field_characteristic,
                     Filtration_value &min_persistence) {
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
                       "Name of file containing a point set. Format is one point per line:   X1 ... Xd ");

  po::options_description visible("Allowed options", 100);
  visible.add_options()("help,h", "produce help message")(
      "exact,e", po::bool_switch(&exact),
      "To activate exact version of Alpha complex 3d (default is false, not available if fast is set)")(
      "fast,f", po::bool_switch(&fast),
      "To activate fast version of Alpha complex 3d (default is false, not available if exact is set)")(
      "weight-file,w", po::value<std::string>(&weight_file)->default_value(std::string()),
      "Name of file containing a point weights. Format is one weight per line:\n  W1\n  ...\n  Wn ")(
      "cuboid-file,c", po::value<std::string>(&cuboid_file),
      "Name of file describing the periodic domain. Format is:\n  min_hx min_hy min_hz\n  max_hx max_hy max_hz")(
      "output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
      "Name of file in which the persistence diagram is written. Default print in std::clog")(
      "max-alpha-square-value,r",
      po::value<Filtration_value>(&alpha_square_max_value)
          ->default_value(std::numeric_limits<Filtration_value>::infinity()),
      "Maximal alpha square value for the Alpha complex construction.")(
      "field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
      "Characteristic p of the coefficient field Z/pZ for computing homology.")(
      "min-persistence,m", po::value<Filtration_value>(&min_persistence),
      "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
      "intervals");

  po::positional_options_description pos;
  pos.add("input-file", 1);

  po::options_description all;
  all.add(visible).add(hidden);

  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
  po::notify(vm);

  if (vm.count("help") || !vm.count("input-file") || !vm.count("weight-file")) {
    std::clog << std::endl;
    std::clog << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::clog << "of a 3D Alpha complex defined on a set of input points.\n";
    std::clog << "3D Alpha complex can be safe (by default) exact or fast, weighted and/or periodic\n\n";
    std::clog << "The output diagram contains one bar per line, written with the convention: \n";
    std::clog << "   p   dim b d \n";
    std::clog << "where dim is the dimension of the homological feature,\n";
    std::clog << "b and d are respectively the birth and death of the feature and \n";
    std::clog << "p is the characteristic of the field Z/pZ used for homology coefficients.\n\n";

    std::clog << "Usage: " << argv[0] << " [options] input-file weight-file\n\n";
    std::clog << visible << std::endl;
    exit(-1);
  }
}