summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/utilities/alpha_complex_persistence.cpp
blob: e86b34e29f3b07de5250203c6a3d81aafa1ac7a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2016 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#include <boost/program_options.hpp>

#include <CGAL/Epick_d.h>
#include <CGAL/Epeck_d.h>

#include <gudhi/Alpha_complex.h>
#include <gudhi/Persistent_cohomology.h>
// to construct a simplex_tree from alpha complex
#include <gudhi/Simplex_tree.h>
#include <gudhi/Points_off_io.h>

#include <iostream>
#include <string>
#include <limits>  // for numeric_limits
#include <vector>
#include <fstream>

using Simplex_tree = Gudhi::Simplex_tree<>;
using Filtration_value = Simplex_tree::Filtration_value;

void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &fast,
                     std::string &weight_file, std::string &output_file_diag, Filtration_value &alpha_square_max_value,
                     int &coeff_field_characteristic, Filtration_value &min_persistence);

template<class Point_d>
std::vector<Point_d> read_off(const std::string &off_file_points) {
  Gudhi::Points_off_reader<Point_d> off_reader(off_file_points);
  if (!off_reader.is_valid()) {
    std::cerr << "Alpha_complex - Unable to read file " << off_file_points << "\n";
    exit(-1);  // ----- >>
  }
  return off_reader.get_point_cloud();
}

std::vector<double> read_weight_file(const std::string &weight_file) {
  std::vector<double> weights;
  // Read weights information from file
  std::ifstream weights_ifstr(weight_file);
  if (weights_ifstr.good()) {
    double weight = 0.0;
    // Attempt read the weight in a double format, return false if it fails
    while (weights_ifstr >> weight) {
      weights.push_back(weight);
    }
  } else {
    std::cerr << "Unable to read weights file " << weight_file << std::endl;
    exit(-1);
  }
  return weights;
}

template<class Kernel>
Simplex_tree create_simplex_tree(const std::string &off_file_points, const std::string &weight_file,
                                 bool exact_version, Filtration_value alpha_square_max_value) {
  Simplex_tree stree;
  auto points = read_off<typename Kernel::Point_d>(off_file_points);

  if (weight_file != std::string()) {
    std::vector<double> weights = read_weight_file(weight_file);
    if (points.size() != weights.size()) {
      std::cerr << "Alpha_complex - Inconsistency between number of points (" << points.size()
                << ") and number of weights (" << weights.size() << ")" << "\n";
      exit(-1);  // ----- >>
    }
    // Init of an alpha complex from an OFF file
    Gudhi::alpha_complex::Alpha_complex<Kernel, true> alpha_complex_from_file(points, weights);

    if (!alpha_complex_from_file.create_complex(stree, alpha_square_max_value, exact_version)) {
      std::cerr << "Alpha complex simplicial complex creation failed." << std::endl;
      exit(-1);
    }
  } else {
    // Init of an alpha complex from an OFF file
    Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex_from_file(points);

    if (!alpha_complex_from_file.create_complex(stree, alpha_square_max_value, exact_version)) {
      std::cerr << "Alpha complex simplicial complex creation failed." << std::endl;
      exit(-1);
    }
  }
  return stree;
}

int main(int argc, char **argv) {
  std::string weight_file;
  std::string off_file_points;
  std::string output_file_diag;
  bool exact_version = false;
  bool fast_version = false;
  Filtration_value alpha_square_max_value;
  int coeff_field_characteristic;
  Filtration_value min_persistence;

  program_options(argc, argv, off_file_points, exact_version, fast_version, weight_file, output_file_diag,
                  alpha_square_max_value, coeff_field_characteristic, min_persistence);

  if ((exact_version) && (fast_version)) {
    std::cerr << "You cannot set the exact and the fast version." << std::endl;
    exit(-1);
  }

  Simplex_tree stree;
  if (fast_version) {
    // WARNING : CGAL::Epick_d is fast but not safe (unlike CGAL::Epeck_d)
    // (i.e. when the points are on a grid)
    using Fast_kernel = CGAL::Epick_d<CGAL::Dynamic_dimension_tag>;
    stree = create_simplex_tree<Fast_kernel>(off_file_points, weight_file, exact_version, alpha_square_max_value);
  } else {
    using Kernel = CGAL::Epeck_d<CGAL::Dynamic_dimension_tag>;
    stree = create_simplex_tree<Kernel>(off_file_points, weight_file, exact_version, alpha_square_max_value);
  }
  // ----------------------------------------------------------------------------
  // Display information about the alpha complex
  // ----------------------------------------------------------------------------
  std::clog << "Simplicial complex is of dimension " << stree.dimension() << " - " << stree.num_simplices()
            << " simplices - " << stree.num_vertices() << " vertices." << std::endl;

  std::clog << "Simplex_tree dim: " << stree.dimension() << std::endl;
  // Compute the persistence diagram of the complex
  Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Gudhi::persistent_cohomology::Field_Zp> pcoh(
      stree);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(coeff_field_characteristic);

  pcoh.compute_persistent_cohomology(min_persistence);

  // Output the diagram in filediag
  if (output_file_diag.empty()) {
    pcoh.output_diagram();
  } else {
    std::clog << "Result in file: " << output_file_diag << std::endl;
    std::ofstream out(output_file_diag);
    pcoh.output_diagram(out);
    out.close();
  }
  return 0;
}

void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &fast,
                     std::string &weight_file, std::string &output_file_diag, Filtration_value &alpha_square_max_value,
                     int &coeff_field_characteristic, Filtration_value &min_persistence) {
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
                       "Name of file containing a point set. Format is one point per line:   X1 ... Xd ");

  po::options_description visible("Allowed options", 100);
  visible.add_options()("help,h", "produce help message")(
      "exact,e", po::bool_switch(&exact),
      "To activate exact version of Alpha complex (default is false, not available if fast is set)")(
      "fast,f", po::bool_switch(&fast),
      "To activate fast version of Alpha complex (default is false, not available if exact is set)")(
      "weight-file,w", po::value<std::string>(&weight_file)->default_value(std::string()),
      "Name of file containing a point weights. Format is one weight per line:\n  W1\n  ...\n  Wn ")(
      "output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
      "Name of file in which the persistence diagram is written. Default print in std::clog")(
      "max-alpha-square-value,r", po::value<Filtration_value>(&alpha_square_max_value)
                                      ->default_value(std::numeric_limits<Filtration_value>::infinity()),
      "Maximal alpha square value for the Alpha complex construction.")(
      "field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
      "Characteristic p of the coefficient field Z/pZ for computing homology.")(
      "min-persistence,m", po::value<Filtration_value>(&min_persistence),
      "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
      "intervals");

  po::positional_options_description pos;
  pos.add("input-file", 1);

  po::options_description all;
  all.add(visible).add(hidden);

  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
  po::notify(vm);

  if (vm.count("help") || !vm.count("input-file")) {
    std::clog << std::endl;
    std::clog << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::clog << "of an Alpha complex defined on a set of input points.\n \n";
    std::clog << "The output diagram contains one bar per line, written with the convention: \n";
    std::clog << "   p   dim b d \n";
    std::clog << "where dim is the dimension of the homological feature,\n";
    std::clog << "b and d are respectively the birth and death of the feature and \n";
    std::clog << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;

    std::clog << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::clog << visible << std::endl;
    exit(-1);
  }
}