summaryrefslogtreecommitdiff
path: root/src/Bitmap_cubical_complex/include/gudhi/Bitmap_cubical_complex_base.h
blob: 0d6299d2ba94e858d3ff103003ab1376c81dbe08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Pawel Dlotko
 *
 *    Copyright (C) 2015 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef BITMAP_CUBICAL_COMPLEX_BASE_H_
#define BITMAP_CUBICAL_COMPLEX_BASE_H_

#include <gudhi/Bitmap_cubical_complex/counter.h>

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include <algorithm>
#include <iterator>
#include <limits>
#include <utility>
#include <stdexcept>
#include <cstddef>

namespace Gudhi {

namespace cubical_complex {

/**
 * @brief Cubical complex represented as a bitmap, class with basic implementation.
 * @ingroup cubical_complex
 * @details This is a class implementing a basic bitmap data structure to store cubical complexes.
 * It implements only the most basic subroutines.
 * The idea of the bitmap is the following. Our aim is to have a memory efficient
 * data structure to store d-dimensional cubical complex
 * C being a cubical decomposition
 * of a rectangular region of a space. This is achieved by storing C as a
 * vector of bits (this is where the name 'bitmap' came from).
 * Each cell is represented by a single
 * bit (in case of black and white bitmaps, or by a single element of a type T
 * (here T is a filtration type of a bitmap, typically a double).
 * All the informations needed for homology and
 * persistent homology computations (like dimension of a cell, boundary and
 * coboundary elements of a cell, are then obtained from the
 * position of the element in C.
 * The default filtration used in this implementation is the lower star filtration.
 */
template <typename T>
class Bitmap_cubical_complex_base {
 public:
  typedef T filtration_type;

  /**
   *Default constructor
   **/
  Bitmap_cubical_complex_base() : total_number_of_cells(0) {}
  /**
   * There are a few constructors of a Bitmap_cubical_complex_base class.
   * First one, that takes vector<unsigned>, creates an empty bitmap of a dimension equal
   * the number of elements in the
   * input vector and size in the i-th dimension equal the number in the position i-of the input vector.
   */
  Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes);
  /**
   * The second constructor takes as a input a Perseus style file. For more details,
   * please consult the documentations of
   * Perseus software as well as examples attached to this
   * implementation.
   **/
  Bitmap_cubical_complex_base(const char* perseus_style_file);
  /**
   * The last constructor of a Bitmap_cubical_complex_base class accepts vector of dimensions (as the first one)
   * together with vector of filtration values of top dimensional cells.
   **/
  Bitmap_cubical_complex_base(const std::vector<unsigned>& dimensions, const std::vector<T>& top_dimensional_cells);

  /**
   * Destructor of the Bitmap_cubical_complex_base class.
   **/
  virtual ~Bitmap_cubical_complex_base() {}

  /**
   * The functions get_boundary_of_a_cell, get_coboundary_of_a_cell, get_dimension_of_a_cell
   * and get_cell_data are the basic
   * functions that compute boundary / coboundary / dimension and the filtration
   * value form a position of a cell in the structure of a bitmap. The input parameter of all of those function is a
   * non-negative integer, indicating a position of a cube in the data structure.
   * In the case of functions that compute (co)boundary, the output is a vector if non-negative integers pointing to
   * the positions of (co)boundary element of the input cell.
   * The boundary elements are guaranteed to be returned so that the
   * incidence coefficients of boundary elements are alternating.
   */
  virtual inline std::vector<std::size_t> get_boundary_of_a_cell(std::size_t cell) const;
  /**
   * The functions get_coboundary_of_a_cell, get_coboundary_of_a_cell,
   * get_dimension_of_a_cell and get_cell_data are the basic
   * functions that compute boundary / coboundary / dimension and the filtration
   * value form a position of a cell in the structure of a bitmap.
   * The input parameter of all of those function is a non-negative integer,
   * indicating a position of a cube in the data structure.
   * In the case of functions that compute (co)boundary, the output is a vector if
   * non-negative integers pointing to the
   * positions of (co)boundary element of the input cell.
   * Note that unlike in the case of boundary, over here the elements are
   * not guaranteed to be returned with alternating incidence numbers.
   *
   **/
  virtual inline std::vector<std::size_t> get_coboundary_of_a_cell(std::size_t cell) const;

  /**
  * This procedure compute incidence numbers between cubes. For a cube \f$A\f$ of
  * dimension n and a cube \f$B \subset A\f$ of dimension n-1, an incidence
  * between \f$A\f$ and \f$B\f$ is the integer with which \f$B\f$ appears in the boundary of \f$A\f$.
  * Note that first parameter is a cube of dimension n,
  * and the second parameter is an adjusted cube in dimension n-1.
  * Given \f$A = [b_1,e_1] \times \ldots \ [b_{j-1},e_{j-1}] \times [b_{j},e_{j}] \times [b_{j+1},e_{j+1}] \times \ldots
  *\times [b_{n},e_{n}] \f$
  * such that \f$ b_{j} \neq e_{j} \f$
  * and \f$B = [b_1,e_1] \times \ldots \ [b_{j-1},e_{j-1}] \times [a,a] \times [b_{j+1},e_{j+1}] \times \ldots \times
  *[b_{n},e_{n}] \f$
  * where \f$ a = b_{j}\f$ or \f$ a = e_{j}\f$, the incidence between \f$A\f$ and \f$B\f$
  * computed by this procedure is given by formula:
  * \f$ c\ (-1)^{\sum_{i=1}^{j-1} dim [b_{i},e_{i}]}  \f$
  * Where \f$ dim [b_{i},e_{i}] = 0 \f$ if \f$ b_{i}=e_{i} \f$ and 1 in other case.
  * c is -1 if \f$ a = b_{j}\f$ and 1 if \f$ a = e_{j}\f$.
  * @exception std::logic_error In case when the cube \f$B\f$ is not n-1
  * dimensional face of a cube \f$A\f$.
  **/
  virtual int compute_incidence_between_cells(std::size_t coface, std::size_t face) const {
    // first get the counters for coface and face:
    std::vector<unsigned> coface_counter = this->compute_counter_for_given_cell(coface);
    std::vector<unsigned> face_counter = this->compute_counter_for_given_cell(face);

    // coface_counter and face_counter should agree at all positions except from one:
    int number_of_position_in_which_counters_do_not_agree = -1;
    std::size_t number_of_full_faces_that_comes_before = 0;
    for (std::size_t i = 0; i != coface_counter.size(); ++i) {
      if ((coface_counter[i] % 2 == 1) && (number_of_position_in_which_counters_do_not_agree == -1)) {
        ++number_of_full_faces_that_comes_before;
      }
      if (coface_counter[i] != face_counter[i]) {
        if (number_of_position_in_which_counters_do_not_agree != -1) {
          std::cout << "Cells given to compute_incidence_between_cells procedure do not form a pair of coface-face.\n";
          throw std::logic_error(
              "Cells given to compute_incidence_between_cells procedure do not form a pair of coface-face.");
        }
        number_of_position_in_which_counters_do_not_agree = i;
      }
    }

    int incidence = 1;
    if (number_of_full_faces_that_comes_before % 2) incidence = -1;
    // if the face cell is on the right from coface cell:
    if (coface_counter[number_of_position_in_which_counters_do_not_agree] + 1 ==
        face_counter[number_of_position_in_which_counters_do_not_agree]) {
      incidence *= -1;
    }

    return incidence;
  }

  /**
* In the case of get_dimension_of_a_cell function, the output is a non-negative integer
* indicating the dimension of a cell.
* Note that unlike in the case of boundary, over here the elements are
* not guaranteed to be returned with alternating incidence numbers.
* To compute incidence between cells use compute_incidence_between_cells
* procedure
**/
  inline unsigned get_dimension_of_a_cell(std::size_t cell) const;

  /**
   * In the case of get_cell_data, the output parameter is a reference to the value of a cube in a given position.
   * This allows reading and changing the value of filtration. Note that if the value of a filtration is changed, the
   * code do not check if we have a filtration or not. i.e. it do not check if the value of a filtration of a cell is
   * not smaller than the value of a filtration of its boundary and not greater than the value of its coboundary.
   **/
  inline T& get_cell_data(std::size_t cell);

  /**
   * Typical input used to construct a baseBitmap class is a filtration given at the top dimensional cells.
   * Then, there are a few ways one can pick the filtration of lower dimensional
   * cells. The most typical one is by so called lower star filtration. This function is always called by any
   * constructor which takes the top dimensional cells. If you use such a constructor,
   * then there is no need to call this function. Call it only if you are putting the filtration
   * of the cells by your own (for instance by using Top_dimensional_cells_iterator).
   **/
  void impose_lower_star_filtration();  // assume that top dimensional cells are already set.

  /**
   * Returns dimension of a complex.
   **/
  inline unsigned dimension() const { return sizes.size(); }

  /**
   * Returns number of all cubes in the data structure.
   **/
  inline unsigned size() const { return this->data.size(); }

  /**
   * Writing to stream operator. By using it we get the values T of cells in order in which they are stored in the
   * structure. This procedure is used for debugging purposes.
   **/
  template <typename K>
  friend std::ostream& operator<<(std::ostream& os, const Bitmap_cubical_complex_base<K>& b);

  /**
   * Function that put the input data to bins. By putting data to bins we mean rounding them to a sequence of values
   * equally distributed in the range of data.
   * Sometimes if most of the cells have different birth-death times, the performance of the algorithms to compute
   * persistence gets worst. When dealing with this type of data, one may want to put different values on cells to
   * some number of bins. The function put_data_to_bins( std::size_t number_of_bins ) is designed for that purpose.
   * The parameter of the function is the number of bins (distinct values) we want to have in the cubical complex.
   **/
  void put_data_to_bins(std::size_t number_of_bins);

  /**
   * Function that put the input data to bins. By putting data to bins we mean rounding them to a sequence of values
   * equally distributed in the range of data.
   * Sometimes if most of the cells have different birth-death times, the performance of the algorithms to compute
   * persistence gets worst. When dealing with this type of data, one may want to put different values on cells to
   * some number of bins. The function put_data_to_bins( T diameter_of_bin ) is designed for that purpose.
   * The parameter of it is the diameter of each bin. Note that the bottleneck distance between the persistence
   * diagram of the cubical complex before and after using such a function will be bounded by the parameter
   * diameter_of_bin.
   **/
  void put_data_to_bins(T diameter_of_bin);

  /**
   * Functions to find min and max values of filtration.
   **/
  std::pair<T, T> min_max_filtration();

  // ITERATORS

  /**
   * @brief Iterator through all cells in the complex (in order they appear in the structure -- i.e.
   * in lexicographical order).
   **/
  class All_cells_iterator : std::iterator<std::input_iterator_tag, T> {
   public:
    All_cells_iterator() { this->counter = 0; }

    All_cells_iterator operator++() {
      // first find first element of the counter that can be increased:
      ++this->counter;
      return *this;
    }

    All_cells_iterator operator++(int) {
      All_cells_iterator result = *this;
      ++(*this);
      return result;
    }

    All_cells_iterator& operator=(const All_cells_iterator& rhs) {
      this->counter = rhs.counter;
      return *this;
    }

    bool operator==(const All_cells_iterator& rhs) const {
      if (this->counter != rhs.counter) return false;
      return true;
    }

    bool operator!=(const All_cells_iterator& rhs) const { return !(*this == rhs); }

    /*
     * The operator * returns position of a cube in the structure of cubical complex. This position can be then used as
     * an argument of the following functions:
     * get_boundary_of_a_cell, get_coboundary_of_a_cell, get_dimension_of_a_cell to get information about the cell
     * boundary and coboundary and dimension
     * and in function get_cell_data to get a filtration of a cell.
     */
    std::size_t operator*() { return this->counter; }
    friend class Bitmap_cubical_complex_base;

   protected:
    std::size_t counter;
  };

  /**
   * Function returning a All_cells_iterator to the first cell of the bitmap.
   **/
  All_cells_iterator all_cells_iterator_begin() {
    All_cells_iterator a;
    return a;
  }

  /**
   * Function returning a All_cells_iterator to the last cell of the bitmap.
   **/
  All_cells_iterator all_cells_iterator_end() {
    All_cells_iterator a;
    a.counter = this->data.size();
    return a;
  }

  /**
   * @brief All_cells_range class provides ranges for All_cells_iterator
   **/
  class All_cells_range {
   public:
    All_cells_range(Bitmap_cubical_complex_base* b) : b(b) {}

    All_cells_iterator begin() { return b->all_cells_iterator_begin(); }

    All_cells_iterator end() { return b->all_cells_iterator_end(); }

   private:
    Bitmap_cubical_complex_base<T>* b;
  };

  All_cells_range all_cells_range() { return All_cells_range(this); }

  /**
   * Boundary_range class provides ranges for boundary iterators.
   **/
  typedef typename std::vector<std::size_t>::const_iterator Boundary_iterator;
  typedef typename std::vector<std::size_t> Boundary_range;

  /**
   * boundary_simplex_range creates an object of a Boundary_simplex_range class
   * that provides ranges for the Boundary_simplex_iterator.
   **/
  Boundary_range boundary_range(std::size_t sh) { return this->get_boundary_of_a_cell(sh); }

  /**
   * Coboundary_range class provides ranges for boundary iterators.
   **/
  typedef typename std::vector<std::size_t>::const_iterator Coboundary_iterator;
  typedef typename std::vector<std::size_t> Coboundary_range;

  /**
   * boundary_simplex_range creates an object of a Boundary_simplex_range class
   * that provides ranges for the Boundary_simplex_iterator.
   **/
  Coboundary_range coboundary_range(std::size_t sh) { return this->get_coboundary_of_a_cell(sh); }

  /**
   * @brief Iterator through top dimensional cells of the complex. The cells appear in order they are stored
   * in the structure (i.e. in lexicographical order)
   **/
  class Top_dimensional_cells_iterator : std::iterator<std::input_iterator_tag, T> {
   public:
    Top_dimensional_cells_iterator(Bitmap_cubical_complex_base& b) : b(b) {
      this->counter = std::vector<std::size_t>(b.dimension());
      // std::fill( this->counter.begin() , this->counter.end() , 0 );
    }

    Top_dimensional_cells_iterator operator++() {
      // first find first element of the counter that can be increased:
      std::size_t dim = 0;
      while ((dim != this->b.dimension()) && (this->counter[dim] == this->b.sizes[dim] - 1)) ++dim;

      if (dim != this->b.dimension()) {
        ++this->counter[dim];
        for (std::size_t i = 0; i != dim; ++i) {
          this->counter[i] = 0;
        }
      } else {
        ++this->counter[0];
      }
      return *this;
    }

    Top_dimensional_cells_iterator operator++(int) {
      Top_dimensional_cells_iterator result = *this;
      ++(*this);
      return result;
    }

    Top_dimensional_cells_iterator& operator=(const Top_dimensional_cells_iterator& rhs) {
      this->counter = rhs.counter;
      this->b = rhs.b;
      return *this;
    }

    bool operator==(const Top_dimensional_cells_iterator& rhs) const {
      if (&this->b != &rhs.b) return false;
      if (this->counter.size() != rhs.counter.size()) return false;
      for (std::size_t i = 0; i != this->counter.size(); ++i) {
        if (this->counter[i] != rhs.counter[i]) return false;
      }
      return true;
    }

    bool operator!=(const Top_dimensional_cells_iterator& rhs) const { return !(*this == rhs); }

    /*
     * The operator * returns position of a cube in the structure of cubical complex. This position can be then used as
     * an argument of the following functions:
     * get_boundary_of_a_cell, get_coboundary_of_a_cell, get_dimension_of_a_cell to get information about the cell
     * boundary and coboundary and dimension
     * and in function get_cell_data to get a filtration of a cell.
     */
    std::size_t operator*() { return this->compute_index_in_bitmap(); }

    std::size_t compute_index_in_bitmap() const {
      std::size_t index = 0;
      for (std::size_t i = 0; i != this->counter.size(); ++i) {
        index += (2 * this->counter[i] + 1) * this->b.multipliers[i];
      }
      return index;
    }

    void print_counter() const {
      for (std::size_t i = 0; i != this->counter.size(); ++i) {
        std::cout << this->counter[i] << " ";
      }
    }
    friend class Bitmap_cubical_complex_base;

   protected:
    std::vector<std::size_t> counter;
    Bitmap_cubical_complex_base& b;
  };

  /**
   * Function returning a Top_dimensional_cells_iterator to the first top dimensional cell of the bitmap.
   **/
  Top_dimensional_cells_iterator top_dimensional_cells_iterator_begin() {
    Top_dimensional_cells_iterator a(*this);
    return a;
  }

  /**
   * Function returning a Top_dimensional_cells_iterator to the last top dimensional cell of the bitmap.
   **/
  Top_dimensional_cells_iterator top_dimensional_cells_iterator_end() {
    Top_dimensional_cells_iterator a(*this);
    for (std::size_t i = 0; i != this->dimension(); ++i) {
      a.counter[i] = this->sizes[i] - 1;
    }
    a.counter[0]++;
    return a;
  }

  /**
   * @brief Top_dimensional_cells_iterator_range class provides ranges for Top_dimensional_cells_iterator_range
   **/
  class Top_dimensional_cells_range {
   public:
    Top_dimensional_cells_range(Bitmap_cubical_complex_base* b) : b(b) {}

    Top_dimensional_cells_iterator begin() { return b->top_dimensional_cells_iterator_begin(); }

    Top_dimensional_cells_iterator end() { return b->top_dimensional_cells_iterator_end(); }

   private:
    Bitmap_cubical_complex_base<T>* b;
  };

  Top_dimensional_cells_range top_dimensional_cells_range() { return Top_dimensional_cells_range(this); }

  //****************************************************************************************************************//
  //****************************************************************************************************************//
  //****************************************************************************************************************//
  //****************************************************************************************************************//

  inline std::size_t number_cells() const { return this->total_number_of_cells; }

  //****************************************************************************************************************//
  //****************************************************************************************************************//
  //****************************************************************************************************************//
  //****************************************************************************************************************//

 protected:
  std::vector<unsigned> sizes;
  std::vector<unsigned> multipliers;
  std::vector<T> data;
  std::size_t total_number_of_cells;

  void set_up_containers(const std::vector<unsigned>& sizes) {
    unsigned multiplier = 1;
    for (std::size_t i = 0; i != sizes.size(); ++i) {
      this->sizes.push_back(sizes[i]);
      this->multipliers.push_back(multiplier);
      multiplier *= 2 * sizes[i] + 1;
    }
    this->data = std::vector<T>(multiplier, std::numeric_limits<T>::infinity());
    this->total_number_of_cells = multiplier;
  }

  std::size_t compute_position_in_bitmap(const std::vector<unsigned>& counter) {
    std::size_t position = 0;
    for (std::size_t i = 0; i != this->multipliers.size(); ++i) {
      position += this->multipliers[i] * counter[i];
    }
    return position;
  }

  std::vector<unsigned> compute_counter_for_given_cell(std::size_t cell) const {
    std::vector<unsigned> counter;
    counter.reserve(this->sizes.size());
    for (std::size_t dim = this->sizes.size(); dim != 0; --dim) {
      counter.push_back(cell / this->multipliers[dim - 1]);
      cell = cell % this->multipliers[dim - 1];
    }
    std::reverse(counter.begin(), counter.end());
    return counter;
  }
  void read_perseus_style_file(const char* perseus_style_file);
  void setup_bitmap_based_on_top_dimensional_cells_list(const std::vector<unsigned>& sizes_in_following_directions,
                                                        const std::vector<T>& top_dimensional_cells);
  Bitmap_cubical_complex_base(const char* perseus_style_file, std::vector<bool> directions);
  Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes, std::vector<bool> directions);
  Bitmap_cubical_complex_base(const std::vector<unsigned>& dimensions, const std::vector<T>& top_dimensional_cells,
                              std::vector<bool> directions);
};

template <typename T>
void Bitmap_cubical_complex_base<T>::put_data_to_bins(std::size_t number_of_bins) {
  bool dbg = false;

  std::pair<T, T> min_max = this->min_max_filtration();
  T dx = (min_max.second - min_max.first) / (T)number_of_bins;

  // now put the data into the appropriate bins:
  for (std::size_t i = 0; i != this->data.size(); ++i) {
    if (dbg) {
      std::cerr << "Before binning : " << this->data[i] << std::endl;
    }
    this->data[i] = min_max.first + dx * (this->data[i] - min_max.first) / number_of_bins;
    if (dbg) {
      std::cerr << "After binning : " << this->data[i] << std::endl;
    }
  }
}

template <typename T>
void Bitmap_cubical_complex_base<T>::put_data_to_bins(T diameter_of_bin) {
  bool dbg = false;
  std::pair<T, T> min_max = this->min_max_filtration();

  std::size_t number_of_bins = (min_max.second - min_max.first) / diameter_of_bin;
  // now put the data into the appropriate bins:
  for (std::size_t i = 0; i != this->data.size(); ++i) {
    if (dbg) {
      std::cerr << "Before binning : " << this->data[i] << std::endl;
    }
    this->data[i] = min_max.first + diameter_of_bin * (this->data[i] - min_max.first) / number_of_bins;
    if (dbg) {
      std::cerr << "After binning : " << this->data[i] << std::endl;
    }
  }
}

template <typename T>
std::pair<T, T> Bitmap_cubical_complex_base<T>::min_max_filtration() {
  std::pair<T, T> min_max(std::numeric_limits<T>::infinity(), -std::numeric_limits<T>::infinity());
  for (std::size_t i = 0; i != this->data.size(); ++i) {
    if (this->data[i] < min_max.first) min_max.first = this->data[i];
    if (this->data[i] > min_max.second) min_max.second = this->data[i];
  }
  return min_max;
}

template <typename K>
std::ostream& operator<<(std::ostream& out, const Bitmap_cubical_complex_base<K>& b) {
  for (typename Bitmap_cubical_complex_base<K>::all_cells_const_iterator it = b.all_cells_const_begin();
       it != b.all_cells_const_end(); ++it) {
    out << *it << " ";
  }
  return out;
}

template <typename T>
Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes) {
  this->set_up_containers(sizes);
}

template <typename T>
void Bitmap_cubical_complex_base<T>::setup_bitmap_based_on_top_dimensional_cells_list(
    const std::vector<unsigned>& sizes_in_following_directions, const std::vector<T>& top_dimensional_cells) {
  this->set_up_containers(sizes_in_following_directions);

  std::size_t number_of_top_dimensional_elements = 1;
  for (std::size_t i = 0; i != sizes_in_following_directions.size(); ++i) {
    number_of_top_dimensional_elements *= sizes_in_following_directions[i];
  }
  if (number_of_top_dimensional_elements != top_dimensional_cells.size()) {
    std::cerr << "Error in constructor Bitmap_cubical_complex_base ( std::vector<std::size_t> "
              << "sizes_in_following_directions, std::vector<T> top_dimensional_cells ). Number of top dimensional "
              << "elements that follow from sizes_in_following_directions vector is different than the size of "
              << "top_dimensional_cells vector."
              << std::endl;
    throw(
        "Error in constructor Bitmap_cubical_complex_base( std::vector<std::size_t> sizes_in_following_directions,"
        "std::vector<T> top_dimensional_cells ). Number of top dimensional elements that follow from "
        "sizes_in_following_directions vector is different than the size of top_dimensional_cells vector.");
  }

  Bitmap_cubical_complex_base<T>::Top_dimensional_cells_iterator it(*this);
  std::size_t index = 0;
  for (it = this->top_dimensional_cells_iterator_begin(); it != this->top_dimensional_cells_iterator_end(); ++it) {
    this->get_cell_data(*it) = top_dimensional_cells[index];
    ++index;
  }
  this->impose_lower_star_filtration();
}

template <typename T>
Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes_in_following_directions,
                                                            const std::vector<T>& top_dimensional_cells) {
  this->setup_bitmap_based_on_top_dimensional_cells_list(sizes_in_following_directions, top_dimensional_cells);
}

template <typename T>
void Bitmap_cubical_complex_base<T>::read_perseus_style_file(const char* perseus_style_file) {
  bool dbg = false;
  std::ifstream inFiltration;
  inFiltration.open(perseus_style_file);
  unsigned dimensionOfData;
  inFiltration >> dimensionOfData;

  if (dbg) {
    std::cerr << "dimensionOfData : " << dimensionOfData << std::endl;
  }

  std::vector<unsigned> sizes;
  sizes.reserve(dimensionOfData);
  // all dimensions multiplied
  std::size_t dimensions = 1;
  for (std::size_t i = 0; i != dimensionOfData; ++i) {
    unsigned size_in_this_dimension;
    inFiltration >> size_in_this_dimension;
    sizes.push_back(size_in_this_dimension);
    dimensions *= size_in_this_dimension;
    if (dbg) {
      std::cerr << "size_in_this_dimension : " << size_in_this_dimension << std::endl;
    }
  }
  this->set_up_containers(sizes);

  Bitmap_cubical_complex_base<T>::Top_dimensional_cells_iterator it(*this);
  it = this->top_dimensional_cells_iterator_begin();

  T filtrationLevel = 0.;
  std::size_t filtration_counter = 0;
  while (!inFiltration.eof()) {
    std::string line;
    getline(inFiltration, line);
    if (line.length() != 0) {
      int n = sscanf(line.c_str(), "%lf", &filtrationLevel);
      if (n != 1) {
        std::string perseus_error("Bad Perseus file format. This line is incorrect : " + line);
        throw std::ios_base::failure(perseus_error.c_str());
      }

      if (dbg) {
        std::cerr << "Cell of an index : " << it.compute_index_in_bitmap()
                  << " and dimension: " << this->get_dimension_of_a_cell(it.compute_index_in_bitmap())
                  << " get the value : " << filtrationLevel << std::endl;
      }
      this->get_cell_data(*it) = filtrationLevel;
      ++it;
      ++filtration_counter;
    }
  }

  if (filtration_counter != dimensions) {
    std::string perseus_error("Bad Perseus file format. Read " + std::to_string(filtration_counter) + " expected " + \
      std::to_string(dimensions) + " values");
    throw std::ios_base::failure(perseus_error.c_str());
  }

  inFiltration.close();
  this->impose_lower_star_filtration();
}

template <typename T>
Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const char* perseus_style_file,
                                                            std::vector<bool> directions) {
  // this constructor is here just for compatibility with a class that creates cubical complexes with periodic boundary
  // conditions.
  // It ignores the last parameter of the function.
  this->read_perseus_style_file(perseus_style_file);
}

template <typename T>
Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes,
                                                            std::vector<bool> directions) {
  // this constructor is here just for compatibility with a class that creates cubical complexes with periodic boundary
  // conditions.
  // It ignores the last parameter of the function.
  this->set_up_containers(sizes);
}

template <typename T>
Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& dimensions,
                                                            const std::vector<T>& top_dimensional_cells,
                                                            std::vector<bool> directions) {
  // this constructor is here just for compatibility with a class that creates cubical complexes with periodic boundary
  // conditions.
  // It ignores the last parameter of the function.
  this->setup_bitmap_based_on_top_dimensional_cells_list(dimensions, top_dimensional_cells);
}

template <typename T>
Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const char* perseus_style_file) {
  this->read_perseus_style_file(perseus_style_file);
}

template <typename T>
std::vector<std::size_t> Bitmap_cubical_complex_base<T>::get_boundary_of_a_cell(std::size_t cell) const {
  std::vector<std::size_t> boundary_elements;

  // Speed traded of for memory. Check if it is better in practice.
  boundary_elements.reserve(this->dimension() * 2);

  std::size_t sum_of_dimensions = 0;
  std::size_t cell1 = cell;
  for (std::size_t i = this->multipliers.size(); i != 0; --i) {
    unsigned position = cell1 / this->multipliers[i - 1];
    if (position % 2 == 1) {
      if (sum_of_dimensions % 2) {
        boundary_elements.push_back(cell + this->multipliers[i - 1]);
        boundary_elements.push_back(cell - this->multipliers[i - 1]);
      } else {
        boundary_elements.push_back(cell - this->multipliers[i - 1]);
        boundary_elements.push_back(cell + this->multipliers[i - 1]);
      }
      ++sum_of_dimensions;
    }
    cell1 = cell1 % this->multipliers[i - 1];
  }

  return boundary_elements;
}

template <typename T>
std::vector<std::size_t> Bitmap_cubical_complex_base<T>::get_coboundary_of_a_cell(std::size_t cell) const {
  std::vector<unsigned> counter = this->compute_counter_for_given_cell(cell);
  std::vector<std::size_t> coboundary_elements;
  std::size_t cell1 = cell;
  for (std::size_t i = this->multipliers.size(); i != 0; --i) {
    unsigned position = cell1 / this->multipliers[i - 1];
    if (position % 2 == 0) {
      if ((cell > this->multipliers[i - 1]) && (counter[i - 1] != 0)) {
        coboundary_elements.push_back(cell - this->multipliers[i - 1]);
      }
      if ((cell + this->multipliers[i - 1] < this->data.size()) && (counter[i - 1] != 2 * this->sizes[i - 1])) {
        coboundary_elements.push_back(cell + this->multipliers[i - 1]);
      }
    }
    cell1 = cell1 % this->multipliers[i - 1];
  }
  return coboundary_elements;
}

template <typename T>
unsigned Bitmap_cubical_complex_base<T>::get_dimension_of_a_cell(std::size_t cell) const {
  bool dbg = false;
  if (dbg) std::cerr << "\n\n\n Computing position o a cell of an index : " << cell << std::endl;
  unsigned dimension = 0;
  for (std::size_t i = this->multipliers.size(); i != 0; --i) {
    unsigned position = cell / this->multipliers[i - 1];

    if (dbg) {
      std::cerr << "i-1 :" << i - 1 << std::endl;
      std::cerr << "cell : " << cell << std::endl;
      std::cerr << "position : " << position << std::endl;
      std::cerr << "multipliers[" << i - 1 << "] = " << this->multipliers[i - 1] << std::endl;
    }

    if (position % 2 == 1) {
      if (dbg) std::cerr << "Nonzero length in this direction \n";
      dimension++;
    }
    cell = cell % this->multipliers[i - 1];
  }
  return dimension;
}

template <typename T>
inline T& Bitmap_cubical_complex_base<T>::get_cell_data(std::size_t cell) {
  return this->data[cell];
}

template <typename T>
void Bitmap_cubical_complex_base<T>::impose_lower_star_filtration() {
  bool dbg = false;

  // this vector will be used to check which elements have already been taken care of in imposing lower star filtration
  std::vector<bool> is_this_cell_considered(this->data.size(), false);

  std::size_t size_to_reserve = 1;
  for (std::size_t i = 0; i != this->multipliers.size(); ++i) {
    size_to_reserve *= (std::size_t)((this->multipliers[i] - 1) / 2);
  }

  std::vector<std::size_t> indices_to_consider;
  indices_to_consider.reserve(size_to_reserve);
  // we assume here that we already have a filtration on the top dimensional cells and
  // we have to extend it to lower ones.
  typename Bitmap_cubical_complex_base<T>::Top_dimensional_cells_iterator it(*this);
  for (it = this->top_dimensional_cells_iterator_begin(); it != this->top_dimensional_cells_iterator_end(); ++it) {
    indices_to_consider.push_back(it.compute_index_in_bitmap());
  }

  while (indices_to_consider.size()) {
    if (dbg) {
      std::cerr << "indices_to_consider in this iteration \n";
      for (std::size_t i = 0; i != indices_to_consider.size(); ++i) {
        std::cout << indices_to_consider[i] << "  ";
      }
    }
    std::vector<std::size_t> new_indices_to_consider;
    for (std::size_t i = 0; i != indices_to_consider.size(); ++i) {
      std::vector<std::size_t> bd = this->get_boundary_of_a_cell(indices_to_consider[i]);
      for (std::size_t boundaryIt = 0; boundaryIt != bd.size(); ++boundaryIt) {
        if (dbg) {
          std::cerr << "filtration of a cell : " << bd[boundaryIt] << " is : " << this->data[bd[boundaryIt]]
                    << " while of a cell: " << indices_to_consider[i] << " is: " << this->data[indices_to_consider[i]]
                    << std::endl;
        }
        if (this->data[bd[boundaryIt]] > this->data[indices_to_consider[i]]) {
          this->data[bd[boundaryIt]] = this->data[indices_to_consider[i]];
          if (dbg) {
            std::cerr << "Setting the value of a cell : " << bd[boundaryIt]
                      << " to : " << this->data[indices_to_consider[i]] << std::endl;
          }
        }
        if (is_this_cell_considered[bd[boundaryIt]] == false) {
          new_indices_to_consider.push_back(bd[boundaryIt]);
          is_this_cell_considered[bd[boundaryIt]] = true;
        }
      }
    }
    indices_to_consider.swap(new_indices_to_consider);
  }
}

template <typename T>
bool compareFirstElementsOfTuples(const std::pair<std::pair<T, std::size_t>, char>& first,
                                  const std::pair<std::pair<T, std::size_t>, char>& second) {
  if (first.first.first < second.first.first) {
    return true;
  } else {
    if (first.first.first > second.first.first) {
      return false;
    }
    // in this case first.first.first == second.first.first, so we need to compare dimensions
    return first.second < second.second;
  }
}

}  // namespace cubical_complex

namespace Cubical_complex = cubical_complex;

}  // namespace Gudhi

#endif  // BITMAP_CUBICAL_COMPLEX_BASE_H_