summaryrefslogtreecommitdiff
path: root/src/Bitmap_cubical_complex/include/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h
blob: 189014696902ee4b008ad9dcbc2cfb4992250816 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Pawel Dlotko
 *
 *    Copyright (C) 2015 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef BITMAP_CUBICAL_COMPLEX_PERIODIC_BOUNDARY_CONDITIONS_BASE_H_
#define BITMAP_CUBICAL_COMPLEX_PERIODIC_BOUNDARY_CONDITIONS_BASE_H_

#include <gudhi/Bitmap_cubical_complex_base.h>

#include <cmath>
#include <limits>  // for numeric_limits<>
#include <vector>
#include <stdexcept>
#include <cstddef>

namespace Gudhi {

namespace cubical_complex {

// in this class, we are storing all the elements which are in normal bitmap (i.e. the bitmap without the periodic
// boundary conditions). But, we set up the iterators and the procedures to compute boundary and coboundary in the way
// that it is all right. We assume here that all the cells that are on the left / bottom and so on remains, while all
// the cells on the right / top are not in the Bitmap_cubical_complex_periodic_boundary_conditions_base

/**
 * @brief Cubical complex with periodic boundary conditions represented as a bitmap.
 * @ingroup cubical_complex
 * @details This is a class implementing a bitmap data structure with periodic boundary conditions. Most of the
 * functions are
 * identical to the functions from Bitmap_cubical_complex_base.
 * The ones that needed to be updated are the constructors and get_boundary_of_a_cell and get_coboundary_of_a_cell.
 */
template <typename T>
class Bitmap_cubical_complex_periodic_boundary_conditions_base : public Bitmap_cubical_complex_base<T> {
 public:
  // constructors that take an extra parameter:

  /**
   * Default constructor of Bitmap_cubical_complex_periodic_boundary_conditions_base class.
   */
  Bitmap_cubical_complex_periodic_boundary_conditions_base() {}
  /**
   * A constructor of Bitmap_cubical_complex_periodic_boundary_conditions_base class that takes the following
   * parameters: (1) vector with numbers of top dimensional cells in all dimensions and (2) vector of booleans. If
   * at i-th position of this vector there is true value, that means that periodic boundary conditions are to be
   * imposed in this direction. In case of false, the periodic boundary conditions will not be imposed in the direction
   * i.
   */
  Bitmap_cubical_complex_periodic_boundary_conditions_base(
      const std::vector<unsigned>& sizes,
      const std::vector<bool>& directions_in_which_periodic_b_cond_are_to_be_imposed);
  /**
   * A constructor of Bitmap_cubical_complex_periodic_boundary_conditions_base class that takes the name of Perseus
   * style file as an input. Please consult the documentation about the specification of the file.
   */
  Bitmap_cubical_complex_periodic_boundary_conditions_base(const char* perseusStyleFile);
  /**
   * A constructor of Bitmap_cubical_complex_periodic_boundary_conditions_base class that takes the following
   * parameters: (1) vector with numbers of top dimensional cells in all dimensions and (2) vector of top dimensional
   * cells (ordered lexicographically) and (3) vector of booleans. If at i-th position of this vector there is true
   * value, that means that periodic boundary conditions are to be imposed in this direction. In case of false, the
   * periodic boundary conditions will not be imposed in the direction i.
   */
  Bitmap_cubical_complex_periodic_boundary_conditions_base(
      const std::vector<unsigned>& dimensions, const std::vector<T>& topDimensionalCells,
      const std::vector<bool>& directions_in_which_periodic_b_cond_are_to_be_imposed);

  /**
   * Destructor of the Bitmap_cubical_complex_periodic_boundary_conditions_base class.
   **/
  virtual ~Bitmap_cubical_complex_periodic_boundary_conditions_base() {}

  // overwritten methods co compute boundary and coboundary
  /**
   * A version of a function that return boundary of a given cell for an object of
   * Bitmap_cubical_complex_periodic_boundary_conditions_base class.
   * The boundary elements are guaranteed to be returned so that the
   * incidence coefficients are alternating.
   */
  virtual std::vector<std::size_t> get_boundary_of_a_cell(std::size_t cell) const;

  /**
   * A version of a function that return coboundary of a given cell for an object of
   * Bitmap_cubical_complex_periodic_boundary_conditions_base class.
   * Note that unlike in the case of boundary, over here the elements are
   * not guaranteed to be returned with alternating incidence numbers.
   * To compute incidence between cells use compute_incidence_between_cells
   * procedure
   */
  virtual std::vector<std::size_t> get_coboundary_of_a_cell(std::size_t cell) const;

  /**
  * This procedure compute incidence numbers between cubes. For a cube \f$A\f$ of
  * dimension n and a cube \f$B \subset A\f$ of dimension n-1, an incidence
  * between \f$A\f$ and \f$B\f$ is the integer with which \f$B\f$ appears in the boundary of \f$A\f$.
  * Note that first parameter is a cube of dimension n,
  * and the second parameter is an adjusted cube in dimension n-1.
  * Given \f$A = [b_1,e_1] \times \ldots \ [b_{j-1},e_{j-1}] \times [b_{j},e_{j}] \times [b_{j+1},e_{j+1}] \times \ldots
  *\times [b_{n},e_{n}] \f$
  * such that \f$ b_{j} \neq e_{j} \f$
  * and \f$B = [b_1,e_1] \times \ldots \ [b_{j-1},e_{j-1}] \times [a,a] \times [b_{j+1},e_{j+1}] \times \ldots \times
  *[b_{n},e_{n}]s \f$
  * where \f$ a = b_{j}\f$ or \f$ a = e_{j}\f$, the incidence between \f$A\f$ and \f$B\f$
  * computed by this procedure is given by formula:
  * \f$ c\ (-1)^{\sum_{i=1}^{j-1} dim [b_{i},e_{i}]}  \f$
  * Where \f$ dim [b_{i},e_{i}] = 0 \f$ if \f$ b_{i}=e_{i} \f$ and 1 in other case.
  * c is -1 if \f$ a = b_{j}\f$ and 1 if \f$ a = e_{j}\f$.
  * @exception std::logic_error In case when the cube \f$B\f$ is not n-1
  * dimensional face of a cube \f$A\f$.
  **/
  virtual int compute_incidence_between_cells(std::size_t coface, std::size_t face) {
    // first get the counters for coface and face:
    std::vector<unsigned> coface_counter = this->compute_counter_for_given_cell(coface);
    std::vector<unsigned> face_counter = this->compute_counter_for_given_cell(face);

    // coface_counter and face_counter should agree at all positions except from one:
    int number_of_position_in_which_counters_do_not_agree = -1;
    std::size_t number_of_full_faces_that_comes_before = 0;
    for (std::size_t i = 0; i != coface_counter.size(); ++i) {
      if ((coface_counter[i] % 2 == 1) && (number_of_position_in_which_counters_do_not_agree == -1)) {
        ++number_of_full_faces_that_comes_before;
      }
      if (coface_counter[i] != face_counter[i]) {
        if (number_of_position_in_which_counters_do_not_agree != -1) {
          std::cerr << "Cells given to compute_incidence_between_cells procedure do not form a pair of coface-face.\n";
          throw std::logic_error(
              "Cells given to compute_incidence_between_cells procedure do not form a pair of coface-face.");
        }
        number_of_position_in_which_counters_do_not_agree = i;
      }
    }

    int incidence = 1;
    if (number_of_full_faces_that_comes_before % 2) incidence = -1;
    // if the face cell is on the right from coface cell:
    if ((coface_counter[number_of_position_in_which_counters_do_not_agree] + 1 ==
         face_counter[number_of_position_in_which_counters_do_not_agree]) ||
        ((coface_counter[number_of_position_in_which_counters_do_not_agree] != 1) &&
         (face_counter[number_of_position_in_which_counters_do_not_agree] == 0))) {
      incidence *= -1;
    }

    return incidence;
  }

 protected:
  std::vector<bool> directions_in_which_periodic_b_cond_are_to_be_imposed;

  void set_up_containers(const std::vector<unsigned>& sizes) {
    unsigned multiplier = 1;
    for (std::size_t i = 0; i != sizes.size(); ++i) {
      this->sizes.push_back(sizes[i]);
      this->multipliers.push_back(multiplier);

      if (directions_in_which_periodic_b_cond_are_to_be_imposed[i]) {
        multiplier *= 2 * sizes[i];
      } else {
        multiplier *= 2 * sizes[i] + 1;
      }
    }
    // std::reverse( this->sizes.begin() , this->sizes.end() );
    this->data = std::vector<T>(multiplier, std::numeric_limits<T>::infinity());
    this->total_number_of_cells = multiplier;
  }
  Bitmap_cubical_complex_periodic_boundary_conditions_base(const std::vector<unsigned>& sizes);
  Bitmap_cubical_complex_periodic_boundary_conditions_base(const std::vector<unsigned>& dimensions,
                                                           const std::vector<T>& topDimensionalCells);

  /**
   * A procedure used to construct the data structures in the class.
  **/
  void construct_complex_based_on_top_dimensional_cells(
      const std::vector<unsigned>& dimensions, const std::vector<T>& topDimensionalCells,
      const std::vector<bool>& directions_in_which_periodic_b_cond_are_to_be_imposed);
};

template <typename T>
void Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::construct_complex_based_on_top_dimensional_cells(
    const std::vector<unsigned>& dimensions, const std::vector<T>& topDimensionalCells,
    const std::vector<bool>& directions_in_which_periodic_b_cond_are_to_be_imposed) {
  this->directions_in_which_periodic_b_cond_are_to_be_imposed = directions_in_which_periodic_b_cond_are_to_be_imposed;
  this->set_up_containers(dimensions);

  std::size_t i = 0;
  for (auto it = this->top_dimensional_cells_iterator_begin(); it != this->top_dimensional_cells_iterator_end(); ++it) {
    this->get_cell_data(*it) = topDimensionalCells[i];
    ++i;
  }
  this->impose_lower_star_filtration();
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base(
    const std::vector<unsigned>& sizes,
    const std::vector<bool>& directions_in_which_periodic_b_cond_are_to_be_imposed) {
  this->directions_in_which_periodic_b_cond_are_to_be_imposed(directions_in_which_periodic_b_cond_are_to_be_imposed);
  this->set_up_containers(sizes);
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base(
    const char* perseus_style_file) {
  // for Perseus style files:
  bool dbg = false;

  std::ifstream inFiltration;
  inFiltration.open(perseus_style_file);
  unsigned dimensionOfData;
  inFiltration >> dimensionOfData;

  this->directions_in_which_periodic_b_cond_are_to_be_imposed = std::vector<bool>(dimensionOfData, false);

  std::vector<unsigned> sizes;
  sizes.reserve(dimensionOfData);
  for (std::size_t i = 0; i != dimensionOfData; ++i) {
    int size_in_this_dimension;
    inFiltration >> size_in_this_dimension;
    if (size_in_this_dimension < 0) {
      this->directions_in_which_periodic_b_cond_are_to_be_imposed[i] = true;
    }
    sizes.push_back(abs(size_in_this_dimension));
  }
  this->set_up_containers(sizes);

  typename Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Top_dimensional_cells_iterator it(*this);
  it = this->top_dimensional_cells_iterator_begin();

  while (!inFiltration.eof()) {
    double filtrationLevel;
    inFiltration >> filtrationLevel;
    if (inFiltration.eof()) break;

    if (dbg) {
      std::clog << "Cell of an index : " << it.compute_index_in_bitmap()
                << " and dimension: " << this->get_dimension_of_a_cell(it.compute_index_in_bitmap())
                << " get the value : " << filtrationLevel << std::endl;
    }
    this->get_cell_data(*it) = filtrationLevel;
    ++it;
  }
  inFiltration.close();
  this->impose_lower_star_filtration();
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base(
    const std::vector<unsigned>& sizes) {
  this->directions_in_which_periodic_b_cond_are_to_be_imposed = std::vector<bool>(sizes.size(), false);
  this->set_up_containers(sizes);
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base(
    const std::vector<unsigned>& dimensions, const std::vector<T>& topDimensionalCells) {
  std::vector<bool> directions_in_which_periodic_b_cond_are_to_be_imposed = std::vector<bool>(dimensions.size(), false);
  this->construct_complex_based_on_top_dimensional_cells(dimensions, topDimensionalCells,
                                                         directions_in_which_periodic_b_cond_are_to_be_imposed);
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base(
    const std::vector<unsigned>& dimensions, const std::vector<T>& topDimensionalCells,
    const std::vector<bool>& directions_in_which_periodic_b_cond_are_to_be_imposed) {
  this->construct_complex_based_on_top_dimensional_cells(dimensions, topDimensionalCells,
                                                         directions_in_which_periodic_b_cond_are_to_be_imposed);
}

// ***********************Methods************************ //

template <typename T>
std::vector<std::size_t> Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::get_boundary_of_a_cell(
    std::size_t cell) const {
  bool dbg = false;
  if (dbg) {
    std::clog << "Computations of boundary of a cell : " << cell << std::endl;
  }

  std::vector<std::size_t> boundary_elements;
  boundary_elements.reserve(this->dimension() * 2);
  std::size_t cell1 = cell;
  std::size_t sum_of_dimensions = 0;

  for (std::size_t i = this->multipliers.size(); i != 0; --i) {
    unsigned position = cell1 / this->multipliers[i - 1];
    // this cell have a nonzero length in this direction, therefore we can compute its boundary in this direction.
    if (position % 2 == 1) {
      // if there are no periodic boundary conditions in this direction, we do not have to do anything.
      if (!directions_in_which_periodic_b_cond_are_to_be_imposed[i - 1]) {
        if (sum_of_dimensions % 2) {
          boundary_elements.push_back(cell - this->multipliers[i - 1]);
          boundary_elements.push_back(cell + this->multipliers[i - 1]);
        } else {
          boundary_elements.push_back(cell + this->multipliers[i - 1]);
          boundary_elements.push_back(cell - this->multipliers[i - 1]);
        }
        if (dbg) {
          std::clog << cell - this->multipliers[i - 1] << " " << cell + this->multipliers[i - 1] << " ";
        }
      } else {
        // in this direction we have to do boundary conditions. Therefore, we need to check if we are not at the end.
        if (position != 2 * this->sizes[i - 1] - 1) {
          if (sum_of_dimensions % 2) {
            boundary_elements.push_back(cell - this->multipliers[i - 1]);
            boundary_elements.push_back(cell + this->multipliers[i - 1]);
          } else {
            boundary_elements.push_back(cell + this->multipliers[i - 1]);
            boundary_elements.push_back(cell - this->multipliers[i - 1]);
          }
          if (dbg) {
            std::clog << cell - this->multipliers[i - 1] << " " << cell + this->multipliers[i - 1] << " ";
          }
        } else {
          if (sum_of_dimensions % 2) {
            boundary_elements.push_back(cell - this->multipliers[i - 1]);
            boundary_elements.push_back(cell - (2 * this->sizes[i - 1] - 1) * this->multipliers[i - 1]);
          } else {
            boundary_elements.push_back(cell - (2 * this->sizes[i - 1] - 1) * this->multipliers[i - 1]);
            boundary_elements.push_back(cell - this->multipliers[i - 1]);
          }
          if (dbg) {
            std::clog << cell - this->multipliers[i - 1] << " "
                      << cell - (2 * this->sizes[i - 1] - 1) * this->multipliers[i - 1] << " ";
          }
        }
      }
      ++sum_of_dimensions;
    }
    cell1 = cell1 % this->multipliers[i - 1];
  }
  return boundary_elements;
}

template <typename T>
std::vector<std::size_t> Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::get_coboundary_of_a_cell(
    std::size_t cell) const {
  std::vector<unsigned> counter = this->compute_counter_for_given_cell(cell);
  std::vector<std::size_t> coboundary_elements;
  std::size_t cell1 = cell;
  for (std::size_t i = this->multipliers.size(); i != 0; --i) {
    unsigned position = cell1 / this->multipliers[i - 1];
    // if the cell has zero length in this direction, then it will have cbd in this direction.
    if (position % 2 == 0) {
      if (!this->directions_in_which_periodic_b_cond_are_to_be_imposed[i - 1]) {
        // no periodic boundary conditions in this direction
        if ((counter[i - 1] != 0) && (cell > this->multipliers[i - 1])) {
          coboundary_elements.push_back(cell - this->multipliers[i - 1]);
        }
        if ((counter[i - 1] != 2 * this->sizes[i - 1]) && (cell + this->multipliers[i - 1] < this->data.size())) {
          coboundary_elements.push_back(cell + this->multipliers[i - 1]);
        }
      } else {
        // we want to have periodic boundary conditions in this direction
        if (counter[i - 1] != 0) {
          coboundary_elements.push_back(cell - this->multipliers[i - 1]);
          coboundary_elements.push_back(cell + this->multipliers[i - 1]);
        } else {
          // in this case counter[i-1] == 0.
          coboundary_elements.push_back(cell + this->multipliers[i - 1]);
          coboundary_elements.push_back(cell + (2 * this->sizes[i - 1] - 1) * this->multipliers[i - 1]);
        }
      }
    }

    cell1 = cell1 % this->multipliers[i - 1];
  }
  return coboundary_elements;
}

}  // namespace cubical_complex

namespace Cubical_complex = cubical_complex;

}  // namespace Gudhi

#endif  // BITMAP_CUBICAL_COMPLEX_PERIODIC_BOUNDARY_CONDITIONS_BASE_H_