summaryrefslogtreecommitdiff
path: root/src/Bottleneck_distance/test/bottleneck_unit_test.cpp
blob: 44141baa1f7a29d98a77c010c6089f4802ce195f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author:       Francois Godi
 *
 *    Copyright (C) 2015 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */


#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "bottleneck distance"
#include <boost/test/unit_test.hpp>

#include <random>
#include <gudhi/Bottleneck.h>
#include <gudhi/Unitary_tests_utils.h>

using namespace Gudhi::persistence_diagram;

int n1 = 81;  // a natural number >0
int n2 = 180;  // a natural number >0
double upper_bound = 406.43;  // any real >0


std::uniform_real_distribution<double> unif(0., upper_bound);
std::default_random_engine re;
std::vector< std::pair<double, double> > v1, v2;

BOOST_AUTO_TEST_CASE(persistence_graph) {
  // Random construction
  for (int i = 0; i < n1; i++) {
    double a = unif(re);
    double b = unif(re);
    v1.emplace_back(std::min(a, b), std::max(a, b));
  }
  for (int i = 0; i < n2; i++) {
    double a = unif(re);
    double b = unif(re);
    v2.emplace_back(std::min(a, b), std::max(a, b));
  }
  Persistence_graph g(v1, v2, 0.);
  std::vector<double> d(g.sorted_distances());
  //
  BOOST_CHECK(!g.on_the_u_diagonal(n1 - 1));
  BOOST_CHECK(!g.on_the_u_diagonal(n1));
  BOOST_CHECK(!g.on_the_u_diagonal(n2 - 1));
  BOOST_CHECK(g.on_the_u_diagonal(n2));
  BOOST_CHECK(!g.on_the_v_diagonal(n1 - 1));
  BOOST_CHECK(g.on_the_v_diagonal(n1));
  BOOST_CHECK(g.on_the_v_diagonal(n2 - 1));
  BOOST_CHECK(g.on_the_v_diagonal(n2));
  //
  BOOST_CHECK(g.corresponding_point_in_u(0) == n2);
  BOOST_CHECK(g.corresponding_point_in_u(n1) == 0);
  BOOST_CHECK(g.corresponding_point_in_v(0) == n1);
  BOOST_CHECK(g.corresponding_point_in_v(n2) == 0);
  //
  BOOST_CHECK(g.size() == (n1 + n2));
  //
  BOOST_CHECK((int) d.size() == (n1 + n2)*(n1 + n2) + n1 + n2 + 1);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(0, 0))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(0, n1 - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(0, n1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(0, n2 - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(0, n2))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(0, (n1 + n2) - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(n1, 0))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(n1, n1 - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(n1, n1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(n1, n2 - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(n1, n2))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance(n1, (n1 + n2) - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance((n1 + n2) - 1, 0))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance((n1 + n2) - 1, n1 - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance((n1 + n2) - 1, n1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance((n1 + n2) - 1, n2 - 1))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance((n1 + n2) - 1, n2))) > 0);
  BOOST_CHECK(std::count(d.begin(), d.end(), GUDHI_PROTECT_FLOAT(g.distance((n1 + n2) - 1, (n1 + n2) - 1))) > 0);
}

BOOST_AUTO_TEST_CASE(neighbors_finder) {
  Persistence_graph g(v1, v2, 0.);
  Neighbors_finder nf(g, 1.);
  for (int v_point_index = 1; v_point_index < ((n2 + n1)*9 / 10); v_point_index += 2)
    nf.add(v_point_index);
  //
  int v_point_index_1 = nf.pull_near(n2 / 2);
  BOOST_CHECK((v_point_index_1 == -1) || (g.distance(n2 / 2, v_point_index_1) <= 1.));
  std::vector<int> l = nf.pull_all_near(n2 / 2);
  bool v = true;
  for (auto it = l.cbegin(); it != l.cend(); ++it)
    v = v && (g.distance(n2 / 2, *it) > 1.);
  BOOST_CHECK(v);
  int v_point_index_2 = nf.pull_near(n2 / 2);
  BOOST_CHECK(v_point_index_2 == -1);
}

BOOST_AUTO_TEST_CASE(layered_neighbors_finder) {
  Persistence_graph g(v1, v2, 0.);
  Layered_neighbors_finder lnf(g, 1.);
  for (int v_point_index = 1; v_point_index < ((n2 + n1)*9 / 10); v_point_index += 2)
    lnf.add(v_point_index, v_point_index % 7);
  //
  int v_point_index_1 = lnf.pull_near(n2 / 2, 6);
  BOOST_CHECK((v_point_index_1 == -1) || (g.distance(n2 / 2, v_point_index_1) <= 1.));
  int v_point_index_2 = lnf.pull_near(n2 / 2, 6);
  BOOST_CHECK(v_point_index_2 == -1);
  v_point_index_1 = lnf.pull_near(n2 / 2, 0);
  BOOST_CHECK((v_point_index_1 == -1) || (g.distance(n2 / 2, v_point_index_1) <= 1.));
  v_point_index_2 = lnf.pull_near(n2 / 2, 0);
  BOOST_CHECK(v_point_index_2 == -1);
}

BOOST_AUTO_TEST_CASE(graph_matching) {
  Persistence_graph g(v1, v2, 0.);
  Graph_matching m1(g);
  m1.set_r(0.);
  int e = 0;
  while (m1.multi_augment())
    ++e;
  BOOST_CHECK(e > 0);
  BOOST_CHECK(e <= 2 * sqrt(2 * (n1 + n2)));
  Graph_matching m2 = m1;
  BOOST_CHECK(!m2.multi_augment());
  m2.set_r(upper_bound);
  e = 0;
  while (m2.multi_augment())
    ++e;
  BOOST_CHECK(e <= 2 * sqrt(2 * (n1 + n2)));
  BOOST_CHECK(m2.perfect());
  BOOST_CHECK(!m1.perfect());
}

BOOST_AUTO_TEST_CASE(global) {
  std::uniform_real_distribution<double> unif1(0., upper_bound);
  std::uniform_real_distribution<double> unif2(upper_bound / 10000., upper_bound / 100.);
  std::default_random_engine re;
  std::vector< std::pair<double, double> > v1, v2;
  for (int i = 0; i < n1; i++) {
    double a = unif1(re);
    double b = unif1(re);
    double x = unif2(re);
    double y = unif2(re);
    v1.emplace_back(std::min(a, b), std::max(a, b));
    v2.emplace_back(std::min(a, b) + std::min(x, y), std::max(a, b) + std::max(x, y));
    if (i % 5 == 0)
      v1.emplace_back(std::min(a, b), std::min(a, b) + x);
    if (i % 3 == 0)
      v2.emplace_back(std::max(a, b), std::max(a, b) + y);
  }
  BOOST_CHECK(bottleneck_distance(v1, v2, 0.) <= upper_bound / 100.);
  BOOST_CHECK(bottleneck_distance(v1, v2, upper_bound / 10000.) <= upper_bound / 100. + upper_bound / 10000.);
  BOOST_CHECK(std::abs(bottleneck_distance(v1, v2, 0.) - bottleneck_distance(v1, v2, upper_bound / 10000.)) <= upper_bound / 10000.);

  std::vector< std::pair<double, double> > empty;
  std::vector< std::pair<double, double> > one = {{8, 10}};
  BOOST_CHECK(bottleneck_distance(empty, empty) == 0);
  BOOST_CHECK(bottleneck_distance(empty, one) == 1);
}