summaryrefslogtreecommitdiff
path: root/src/Collapse/test/collapse_unit_test.cpp
blob: b887624634b061802b930f5150fafde92adb264d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2020 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */


#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "collapse"
#include <boost/test/unit_test.hpp>
#include <boost/mpl/list.hpp>
#include <boost/range/adaptor/transformed.hpp>

#include <gudhi/Flag_complex_edge_collapser.h>
#include <gudhi/distance_functions.h>
#include <gudhi/graph_simplicial_complex.h>

#include <iostream>
#include <tuple>
#include <vector>
#include <array>
#include <cmath>

struct Simplicial_complex {
  using Vertex_handle = short;
  using Filtration_value = float;
};

using Vertex_handle = Simplicial_complex::Vertex_handle;
using Filtration_value = Simplicial_complex::Filtration_value;
using Filtered_edge = std::tuple<Vertex_handle, Vertex_handle, Filtration_value>;
using Filtered_edge_list = std::vector<Filtered_edge>;

template<typename Filtered_edge_range>
bool find_edge_in_list(const Filtered_edge& edge, const Filtered_edge_range& edge_list) {
  for (auto edge_from_list : edge_list) {
    if (edge_from_list == edge)
      return true;
  }
  return false;
}

template<typename Filtered_edge_range>
void trace_and_check_collapse(const Filtered_edge_range& filtered_edges, const Filtered_edge_list& removed_edges) {
  std::cout << "BEFORE COLLAPSE - Total number of edges: " << filtered_edges.size() << std::endl;
  BOOST_CHECK(filtered_edges.size() > 0);
  for (auto filtered_edge : filtered_edges) {
    std::cout << "f[" << std::get<0>(filtered_edge) << ", " << std::get<1>(filtered_edge) << "] = "
              << std::get<2>(filtered_edge) << std::endl;
  }

  std::cout << "COLLAPSE - keep edges: " << std::endl;
  auto remaining_edges = Gudhi::collapse::flag_complex_collapse_edges(filtered_edges);

  std::cout << "AFTER COLLAPSE - Total number of edges: " << remaining_edges.size() << std::endl;
  BOOST_CHECK(remaining_edges.size() <= filtered_edges.size());
  for (auto filtered_edge_from_collapse : remaining_edges) {
    std::cout << "f[" << std::get<0>(filtered_edge_from_collapse) << ", " << std::get<1>(filtered_edge_from_collapse)
              << "] = " << std::get<2>(filtered_edge_from_collapse) << std::endl;
    // Check each edge from collapse is in the input
    BOOST_CHECK(find_edge_in_list(filtered_edge_from_collapse, filtered_edges));
  }

  std::cout << "CHECK COLLAPSE - Total number of removed edges: " << removed_edges.size() << std::endl;
  for (auto removed_filtered_edge : removed_edges) {
    std::cout << "f[" << std::get<0>(removed_filtered_edge) << ", " << std::get<1>(removed_filtered_edge) << "] = "
              << std::get<2>(removed_filtered_edge) << std::endl;
    // Check each removed edge from collapse is in the input
    BOOST_CHECK(!find_edge_in_list(removed_filtered_edge, remaining_edges));
  }

}

BOOST_AUTO_TEST_CASE(collapse) {
  std::cout << "***** COLLAPSE *****" << std::endl;
  //  1   2
  //  o---o
  //  |   |
  //  |   |
  //  |   |
  //  o---o
  //  0   3
  Filtered_edge_list edges {{0, 1, 1.},
                            {1, 2, 1.},
                            {2, 3, 1.},
                            {3, 0, 1.}};
  trace_and_check_collapse(edges, {});
  
  //  1   2
  //  o---o
  //  |\ /|
  //  | x |
  //  |/ \|
  //  o---o
  //  0   3
  edges.emplace_back(0, 2, 2.);
  edges.emplace_back(1, 3, 2.);
  trace_and_check_collapse(edges, {{1, 3, 2.}});

  //  1   2   4
  //  o---o---o
  //  |\ /|   |
  //  | x |   |
  //  |/ \|   |
  //  o---o---o
  //  0   3   5
  edges.emplace_back(2, 4, 3.);
  edges.emplace_back(4, 5, 3.);
  edges.emplace_back(5, 3, 3.);
  trace_and_check_collapse(edges, {{1, 3, 2.}});

  //  1   2   4
  //  o---o---o
  //  |\ /|\ /|
  //  | x | x |
  //  |/ \|/ \|
  //  o---o---o
  //  0   3   5
  edges.emplace_back(2, 5, 4.);
  edges.emplace_back(4, 3, 4.);
  trace_and_check_collapse(edges, {{1, 3, 2.}, {4, 3, 4.}});

  //  1   2   4
  //  o---o---o
  //  |\ /|\ /|
  //  | x | x |  + [0,4] and [1,5]
  //  |/ \|/ \|
  //  o---o---o
  //  0   3   5
  edges.emplace_back(1, 5, 5.);
  edges.emplace_back(0, 4, 5.);
  trace_and_check_collapse(edges, {{1, 3, 2.}, {4, 3, 4.}, {0, 4, 5.}});
}

BOOST_AUTO_TEST_CASE(collapse_from_array) {
  std::cout << "***** COLLAPSE FROM ARRAY *****" << std::endl;
  //  1   2
  //  o---o
  //  |\ /|
  //  | x |
  //  |/ \|
  //  o---o
  //  0   3
  std::array<Filtered_edge, 6> f_edge_array = {{{0, 1, 1.},
                                                {1, 2, 1.},
                                                {2, 3, 1.},
                                                {3, 0, 1.},
                                                {0, 2, 2.},
                                                {1, 3, 2.}}};
  trace_and_check_collapse(f_edge_array, {{1, 3, 2.}});
}

BOOST_AUTO_TEST_CASE(collapse_from_proximity_graph) {
  std::cout << "***** COLLAPSE FROM PROXIMITY GRAPH *****" << std::endl;
  //  1   2
  //  o---o
  //  |\ /|
  //  | x |
  //  |/ \|
  //  o---o
  //  0   3
  std::vector<std::vector<Filtration_value>> point_cloud = {{0., 0.},
                                                            {0., 1.},
                                                            {1., 0.},
                                                            {1., 1.} };

  Filtration_value threshold = std::numeric_limits<Filtration_value>::infinity();
  using Proximity_graph = Gudhi::Proximity_graph<Simplicial_complex>;
  Proximity_graph proximity_graph = Gudhi::compute_proximity_graph<Simplicial_complex>(point_cloud,
                                                                                       threshold,
                                                                                       Gudhi::Euclidean_distance());

  auto remaining_edges = Gudhi::collapse::flag_complex_collapse_edges(
      boost::adaptors::transform(edges(proximity_graph), [&](auto&&edge){
        return std::make_tuple(static_cast<Vertex_handle>(source(edge, proximity_graph)),
                               static_cast<Vertex_handle>(target(edge, proximity_graph)),
                               get(Gudhi::edge_filtration_t(), proximity_graph, edge));
      })
    );

  BOOST_CHECK(remaining_edges.size() == 5);

  std::size_t filtration_is_edge_length_nb = 0;
  std::size_t filtration_is_diagonal_length_nb = 0;
  float epsilon = std::numeric_limits<Filtration_value>::epsilon();
  for (auto filtered_edge : remaining_edges) {
    if (std::get<2>(filtered_edge) == 1.)
      filtration_is_edge_length_nb++;
    if (std::fabs(std::get<2>(filtered_edge) - std::sqrt(2.)) <= epsilon)
      filtration_is_diagonal_length_nb++;
  }
  BOOST_CHECK(filtration_is_edge_length_nb == 4);
  BOOST_CHECK(filtration_is_diagonal_length_nb == 1);
}