summaryrefslogtreecommitdiff
path: root/src/Collapse/utilities/distance_matrix_edge_collapse_rips_persistence.cpp
blob: 63c91ebc509512fc1ac27e2a41af3762606c27f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <gudhi/FlagComplexSpMatrix.h>
#include <gudhi/Rips_complex.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Rips_edge_list.h>
#include <gudhi/distance_functions.h>
#include <gudhi/reader_utils.h>
#include <gudhi/Points_off_io.h>

#include <CGAL/Epick_d.h>

#include <boost/program_options.hpp>

// Types definition
using Point = CGAL::Epick_d<CGAL::Dynamic_dimension_tag>::Point_d;
using Vector_of_points = std::vector<Point>;

using Simplex_tree = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
using Filtration_value = double;
using Rips_complex = Gudhi::rips_complex::Rips_complex<Filtration_value>;
using Rips_edge_list = Gudhi::rips_edge_list::Rips_edge_list<Filtration_value>;
using Field_Zp = Gudhi::persistent_cohomology::Field_Zp;
using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Field_Zp>;
using Distance_matrix = std::vector<std::vector<Filtration_value>>;

void program_options(int argc, char* const argv[], double& min_persistence, double& end_thresold,
                     int& dimension, int& dim_max, std::string& csv_matrix_file, std::string& filediag) {
  namespace po = boost::program_options;
  po::options_description visible("Allowed options", 100);
      visible.add_options()
        ("help,h", "produce help message")
      	("min_persistence,m", po::value<double>(&min_persistence)->default_value(0.1),
         "Minimum persistence interval length")
        ("end_thresold,e", po::value<double>(&end_thresold)->default_value(1),
         "Final threshold for rips complex.")
        ("dimensions,D", po::value<int>(&dimension)->default_value(2),
         "Dimension of the manifold.")
        ("dim_max,k ", po::value<int>(&dim_max)->default_value(2),
         "Maximum allowed dimension of the Rips complex.")
        ("input_file_name,i", po::value<std::string>(&csv_matrix_file),
         "The input file.")
        ("filediag,o", po::value<std::string>(&filediag),
         "The output file.");

  po::options_description all;
  all.add(visible);
  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).run(), vm);
  po::notify(vm);
  if (vm.count("help")) {
    std::cout << std::endl;
    std::cout << "Computes rips complexes of different threshold values, to 'end_thresold' from a n random uniform "
                 "point_vector on a selected manifold, . \n";
    std::cout << "Strongly collapses all the rips complexes and output the results in out_file. \n";
    std::cout << "The experiments are repeted 'repete' num of times for each threshold value. \n";
    std::cout << "type -m for manifold options, 's' for uni sphere, 'b' for unit ball, 'f' for file. \n";
    std::cout << "type -i 'filename' for Input file option for exported point sample. \n";
    std::cout << std::endl << std::endl;
    std::cout << "Usage: " << argv[0] << " [options]" << std::endl << std::endl;
    std::cout << visible << std::endl;
    std::abort();
  }
}

class filt_edge_to_dist_matrix {
 public:
  template <class Distance_matrix, class Filtered_sorted_edge_list>
  filt_edge_to_dist_matrix(Distance_matrix& distance_mat, Filtered_sorted_edge_list& edge_filt,
                           std::size_t number_of_points) {
    double inf = std::numeric_limits<double>::max();
    doubleVector distances;
    std::pair<std::size_t, std::size_t> e;
    for (std::size_t indx = 0; indx < number_of_points; indx++) {
      for (std::size_t j = 0; j <= indx; j++) {
        if (j == indx)
          distances.push_back(0);
        else
          distances.push_back(inf);
      }
      distance_mat.push_back(distances);
      distances.clear();
    }

    for (auto edIt = edge_filt.begin(); edIt != edge_filt.end(); edIt++) {
      e = std::minmax(std::get<1>(*edIt), std::get<2>(*edIt));
      distance_mat.at(std::get<1>(e)).at(std::get<0>(e)) = std::get<0>(*edIt);
    }
  }
};

void program_options(int argc, char* argv[], std::string& csv_matrix_file, std::string& filediag,
                     Filtration_value& threshold, int& dim_max, int& p, Filtration_value& min_persistence);

int main(int argc, char* argv[]) {
  auto the_begin = std::chrono::high_resolution_clock::now();

  typedef size_t Vertex_handle;
  typedef std::vector<std::tuple<Filtration_value, Vertex_handle, Vertex_handle>> Filtered_sorted_edge_list;

  std::string csv_matrix_file;
  std::string filediag;
  double threshold;
  int dim_max = 2;
  int p;
  double min_persistence;

  program_options(argc, argv, csv_matrix_file, filediag, threshold, dim_max, p, min_persistence);

  Map map_empty;

  Distance_matrix distances;
  Distance_matrix sparse_distances;

  distances = Gudhi::read_lower_triangular_matrix_from_csv_file<Filtration_value>(csv_matrix_file);
  std::size_t number_of_points = distances.size();
  std::cout << "Read the distance matrix succesfully, of size: " << number_of_points << std::endl;

  Filtered_sorted_edge_list edge_t;
  std::cout << "Computing the one-skeleton for threshold: " << threshold << std::endl;

  Rips_edge_list Rips_edge_list_from_file(distances, threshold);
  Rips_edge_list_from_file.create_edges(edge_t);
  std::cout<< "Sorted edge list computed" << std::endl;
  
  if (edge_t.size() <= 0) {
    std::cerr << "Total number of egdes are zero." << std::endl;
    exit(-1);
  }

  std::cout << "Total number of edges before collapse are: " << edge_t.size() << std::endl;

  // Now we will perform filtered edge collapse to sparsify the edge list edge_t.
  std::cout << "Filtered edge collapse begins" << std::endl;
  FlagComplexSpMatrix mat_filt_edge_coll(number_of_points, edge_t);
  std::cout << "Matrix instansiated" << std::endl;
  Filtered_sorted_edge_list collapse_edges;
  collapse_edges = mat_filt_edge_coll.filtered_edge_collapse();
  filt_edge_to_dist_matrix(sparse_distances, collapse_edges, number_of_points);
  std::cout << "Total number of vertices after collapse in the sparse matrix are: " << mat_filt_edge_coll.num_vertices()
            << std::endl;

  Rips_complex rips_complex_after_collapse(sparse_distances, threshold);

  Simplex_tree stree;
  rips_complex_after_collapse.create_complex(stree, dim_max);

  std::cout << "The complex contains " << stree.num_simplices() << " simplices  after collapse. \n";
  std::cout << "   and has dimension " << stree.dimension() << " \n";

  // Sort the simplices in the order of the filtration
  stree.initialize_filtration();
  // Compute the persistence diagram of the complex
  Persistent_cohomology pcoh(stree);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(3);

  pcoh.compute_persistent_cohomology(min_persistence);
  if (filediag.empty()) {
    pcoh.output_diagram();
  } else {
    std::ofstream out(filediag);
    pcoh.output_diagram(out);
    out.close();
  }

  auto the_end = std::chrono::high_resolution_clock::now();

  std::cout << "Total computation time : " << std::chrono::duration<double, std::milli>(the_end - the_begin).count()
            << " ms\n"
            << std::endl;
  return 0;
}

void program_options(int argc, char* argv[], std::string& csv_matrix_file, std::string& filediag,
                     Filtration_value& threshold, int& dim_max, int& p, Filtration_value& min_persistence) {
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()(
      "input-file", po::value<std::string>(&csv_matrix_file),
      "Name of file containing a distance matrix. Can be square or lower triangular matrix. Separator is ';'.");

  po::options_description visible("Allowed options", 100);
  visible.add_options()("help,h", "produce help message")(
      "output-file,o", po::value<std::string>(&filediag)->default_value(std::string()),
      "Name of file in which the persistence diagram is written. Default print in std::cout")(
      "max-edge-length,r",
      po::value<Filtration_value>(&threshold)->default_value(std::numeric_limits<Filtration_value>::infinity()),
      "Maximal length of an edge for the Rips complex construction.")(
      "cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
      "Maximal dimension of the Rips complex we want to compute.")(
      "field-charac,p", po::value<int>(&p)->default_value(11),
      "Characteristic p of the coefficient field Z/pZ for computing homology.")(
      "min-persistence,m", po::value<Filtration_value>(&min_persistence),
      "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
      "intervals");

  po::positional_options_description pos;
  pos.add("input-file", 1);

  po::options_description all;
  all.add(visible).add(hidden);

  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
  po::notify(vm);

  if (vm.count("help") || !vm.count("input-file")) {
    std::cout << std::endl;
    std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::cout << "of a Rips complex after edge collapse defined on a set of distance matrix.\n \n";
    std::cout << "The output diagram contains one bar per line, written with the convention: \n";
    std::cout << "   p   dim b d \n";
    std::cout << "where dim is the dimension of the homological feature,\n";
    std::cout << "b and d are respectively the birth and death of the feature and \n";
    std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;

    std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::cout << visible << std::endl;
    exit(-1);
  }
}