summaryrefslogtreecommitdiff
path: root/src/Collapse/utilities/distance_matrix_edge_collapse_rips_persistence.cpp
blob: a2bc1c93cfed3a813dbc3cd87e0b92a1dff59d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include <gudhi/FlagComplexSpMatrix.h>
#include <gudhi/Rips_complex.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Rips_edge_list.h>
#include <gudhi/distance_functions.h>
#include <gudhi/reader_utils.h>
#include <gudhi/Points_off_io.h>

#include <CGAL/Epick_d.h>

#include <boost/program_options.hpp>

// Types definition
using Point = CGAL::Epick_d<CGAL::Dynamic_dimension_tag>::Point_d;
using Vector_of_points = std::vector<Point>;

using Simplex_tree = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
using Filtration_value = double;
using Rips_complex = Gudhi::rips_complex::Rips_complex<Filtration_value>;
using Rips_edge_list = Gudhi::rips_edge_list::Rips_edge_list<Filtration_value>;
using Field_Zp = Gudhi::persistent_cohomology::Field_Zp;
using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Field_Zp>;
using Distance_matrix = std::vector<std::vector<Filtration_value>>;

void program_options(int argc, char* const argv[], double& min_persistence, double& end_thresold,
                     int& dimension, int& dim_max, std::string& in_file_name, std::string& out_file_name) {
  namespace po = boost::program_options;
  po::options_description visible("Allowed options", 100);
      visible.add_options()
        ("help,h", "produce help message")
      	("min_persistence,m", po::value<double>(&min_persistence)->default_value(0.1),
         "Minimum persistence interval length")
        ("end_thresold,e", po::value<double>(&end_thresold)->default_value(1),
         "Final threshold for rips complex.")
        ("dimensions,D", po::value<int>(&dimension)->default_value(2),
         "Dimension of the manifold.")
        ("dim_max,k ", po::value<int>(&dim_max)->default_value(2),
         "Maximum allowed dimension of the Rips complex.")
        ("input_file_name,i", po::value<std::string>(&in_file_name),
         "The input file.")
        ("out_file_name,o", po::value<std::string>(&out_file_name),
         "The output file.");

  po::options_description all;
  all.add(visible);
  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).run(), vm);
  po::notify(vm);
  if (vm.count("help")) {
    std::cout << std::endl;
    std::cout << "Computes rips complexes of different threshold values, to 'end_thresold' from a n random uniform "
                 "point_vector on a selected manifold, . \n";
    std::cout << "Strongly collapses all the rips complexes and output the results in out_file. \n";
    std::cout << "The experiments are repeted 'repete' num of times for each threshold value. \n";
    std::cout << "type -m for manifold options, 's' for uni sphere, 'b' for unit ball, 'f' for file. \n";
    std::cout << "type -i 'filename' for Input file option for exported point sample. \n";
    std::cout << std::endl << std::endl;
    std::cout << "Usage: " << argv[0] << " [options]" << std::endl << std::endl;
    std::cout << visible << std::endl;
    std::abort();
  }
}

class filt_edge_to_dist_matrix {
 public:
  template <class Distance_matrix, class Filtered_sorted_edge_list>
  filt_edge_to_dist_matrix(Distance_matrix& distance_mat, Filtered_sorted_edge_list& edge_filt,
                           std::size_t number_of_points) {
    double inf = std::numeric_limits<double>::max();
    doubleVector distances;
    std::pair<std::size_t, std::size_t> e;
    for (std::size_t indx = 0; indx < number_of_points; indx++) {
      for (std::size_t j = 0; j <= indx; j++) {
        if (j == indx)
          distances.push_back(0);
        else
          distances.push_back(inf);
      }
      distance_mat.push_back(distances);
      distances.clear();
    }

    for (auto edIt = edge_filt.begin(); edIt != edge_filt.end(); edIt++) {
      e = std::minmax(std::get<1>(*edIt), std::get<2>(*edIt));
      distance_mat.at(std::get<1>(e)).at(std::get<0>(e)) = std::get<0>(*edIt);
    }
  }
};

int main(int argc, char* const argv[]) {
  auto the_begin = std::chrono::high_resolution_clock::now();
  std::string out_file_name;
  std::string in_file_name;
  std::size_t number_of_points;

  typedef size_t Vertex_handle;
  typedef std::vector<std::tuple<Filtration_value, Vertex_handle, Vertex_handle>> Filtered_sorted_edge_list;

  int dimension;
  double end_threshold;
  double min_persistence;
  int dim_max = 2;

  program_options(argc, argv, min_persistence, end_threshold, dimension, dim_max, in_file_name,
                  out_file_name);

  std::cout << "The current input values to run the program is: " << std::endl;
  std::cout << "min_persistence, end_threshold, dimension, max_complex_dimension, in_file_name, out_file_name"
            << std::endl;
  std::cout << min_persistence << ", " << end_threshold << ", " << dimension << ", " << dim_max
            << ", " << in_file_name << ", " << out_file_name << std::endl;

  Map map_empty;

  Distance_matrix distances;
  Distance_matrix sparse_distances;

  distances = Gudhi::read_lower_triangular_matrix_from_csv_file<Filtration_value>(in_file_name);
  number_of_points = distances.size();
  std::cout << "Read the distance matrix succesfully, of size: " << number_of_points << std::endl;


  std::cout << "Successfully read " << number_of_points << " point_vector.\n";

  std::cout << "Point Set Generated." << std::endl;

  Filtered_sorted_edge_list edge_t;
  std::cout << "Computing the one-skeleton for threshold: " << end_threshold << std::endl;

  Rips_edge_list Rips_edge_list_from_file(distances, end_threshold);
  Rips_edge_list_from_file.create_edges(edge_t);
  std::cout<< "Sorted edge list computed" << std::endl;
  std::cout << "Total number of edges before collapse are: " << edge_t.size() << std::endl;

  if (edge_t.size() <= 0) {
    std::cerr << "Total number of egdes are zero." << std::endl;
    exit(-1);
  }

  // Now we will perform filtered edge collapse to sparsify the edge list edge_t.
  std::cout << "Filtered edge collapse begins" << std::endl;
  FlagComplexSpMatrix mat_filt_edge_coll(number_of_points, edge_t);
  std::cout << "Matrix instansiated" << std::endl;
  Filtered_sorted_edge_list collapse_edges;
  collapse_edges = mat_filt_edge_coll.filtered_edge_collapse();
  filt_edge_to_dist_matrix(sparse_distances, collapse_edges, number_of_points);
  std::cout << "Total number of vertices after collapse in the sparse matrix are: " << mat_filt_edge_coll.num_vertices()
            << std::endl;

  Rips_complex rips_complex_after_collapse(sparse_distances, end_threshold);

  Simplex_tree stree;
  rips_complex_after_collapse.create_complex(stree, dim_max);

  std::cout << "The complex contains " << stree.num_simplices() << " simplices  after collapse. \n";
  std::cout << "   and has dimension " << stree.dimension() << " \n";

  // Sort the simplices in the order of the filtration
  stree.initialize_filtration();
  // Compute the persistence diagram of the complex
  Persistent_cohomology pcoh(stree);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(3);

  pcoh.compute_persistent_cohomology(min_persistence);
  if (out_file_name.empty()) {
    pcoh.output_diagram();
  } else {
    std::ofstream out(out_file_name);
    pcoh.output_diagram(out);
    out.close();
  }

  auto the_end = std::chrono::high_resolution_clock::now();

  std::cout << "Total computation time : " << std::chrono::duration<double, std::milli>(the_end - the_begin).count()
            << " ms\n"
            << std::endl;
  return 0;
}