summaryrefslogtreecommitdiff
path: root/src/Coxeter_triangulation/include/gudhi/IO/output_meshes_to_medit.h
blob: f69d8b295cd153538f1ddbb5f7782e2eeae05c3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2019 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef IO_OUTPUT_MESHES_TO_MEDIT_H_
#define IO_OUTPUT_MESHES_TO_MEDIT_H_

#include <gudhi/IO/Mesh_medit.h>

#include <Eigen/Dense>

#include <cstdlib>  // for std::size_t
#include <fstream>  // for std::ofstream
#include <vector>
#include <type_traits>  // for std::enable_if
#include <tuple>        // for std::get
#include <utility>      // for std::make_pair

namespace Gudhi {

namespace coxeter_triangulation {

using Vertex_points = Mesh_medit::Vertex_points;
using Mesh_elements = Mesh_medit::Mesh_elements;
using Scalar_field_range = Mesh_medit::Scalar_field_range;

template <std::size_t I = 0, typename... Meshes>
typename std::enable_if<I == sizeof...(Meshes), void>::type fill_meshes(Vertex_points& vertex_points,
                                                                        Mesh_elements& edges, Mesh_elements& triangles,
                                                                        Mesh_elements& tetrahedra,
                                                                        Scalar_field_range& triangles_scalar_range,
                                                                        Scalar_field_range& tetrahedra_scalar_range,
                                                                        std::size_t index, const Meshes&... meshes) {}

template <std::size_t I = 0, typename... Meshes>
typename std::enable_if<I != sizeof...(Meshes), void>::type fill_meshes(Vertex_points& vertex_points,
                                                                        Mesh_elements& edges, Mesh_elements& triangles,
                                                                        Mesh_elements& tetrahedra,
                                                                        Scalar_field_range& triangles_scalar_range,
                                                                        Scalar_field_range& tetrahedra_scalar_range,
                                                                        std::size_t index, const Meshes&... meshes) {
  auto mesh = std::get<I>(std::forward_as_tuple(meshes...));
  for (const auto& v : mesh.vertex_points) vertex_points.push_back(v);
  for (const auto& e : mesh.edges) {
    std::vector<std::size_t> edge;
    for (const auto& v_i : e.first) edge.push_back(v_i + index);
    edges.emplace_back(edge, e.second);
  }
  for (const auto& t : mesh.triangles) {
    std::vector<std::size_t> triangle;
    for (const auto& v_i : t.first) triangle.push_back(v_i + index);
    triangles.emplace_back(triangle, t.second);
  }
  for (const auto& t : mesh.tetrahedra) {
    std::vector<std::size_t> tetrahedron;
    for (const auto& v_i : t.first) tetrahedron.push_back(v_i + index);
    tetrahedra.emplace_back(tetrahedron, t.second);
  }
  for (const auto& b : mesh.triangles_scalar_range) triangles_scalar_range.push_back(b);
  for (const auto& b : mesh.tetrahedra_scalar_range) tetrahedra_scalar_range.push_back(b);
  fill_meshes<I + 1, Meshes...>(vertex_points, edges, triangles, tetrahedra, triangles_scalar_range,
                                tetrahedra_scalar_range, index + mesh.vertex_points.size(), meshes...);
}

/** \brief Outputs a text file with specified meshes that can be visualized in
 *   <a target="_blank" href="https://www.ljll.math.upmc.fr/frey/software.html">Medit</a>.
 *
 *  @param[in] amb_d Ambient dimension. Can be 2 or 3.
 *  @param[in] file_name The name of the output file.
 *  @param[in] meshes A pack of meshes to be specified separated by commas.
 * 
 *  @ingroup coxeter_triangulation
 */
template <typename... Meshes>
void output_meshes_to_medit(std::size_t amb_d, std::string file_name, const Meshes&... meshes) {
  Vertex_points vertex_points;
  Mesh_elements edges, triangles, tetrahedra;
  Scalar_field_range triangles_scalar_range, tetrahedra_scalar_range;
  fill_meshes(vertex_points, edges, triangles, tetrahedra, triangles_scalar_range, tetrahedra_scalar_range, 0,
              meshes...);

  std::ofstream ofs(file_name + ".mesh", std::ofstream::out);
  std::ofstream ofs_bb(file_name + ".bb", std::ofstream::out);

  if (amb_d == 2) {
    ofs << "MeshVersionFormatted 1\nDimension 2\n";
    ofs_bb << "2 1 ";
    ofs << "Vertices\n" << vertex_points.size() << "\n";
    for (auto p : vertex_points) {
      ofs << p[0] << " " << p[1] << " 2\n";
    }
    ofs << "Edges " << edges.size() << "\n";
    for (auto e : edges) {
      for (auto v : e.first) ofs << v << " ";
      ofs << e.second << std::endl;
    }
    ofs << "Triangles " << triangles.size() << "\n";
    for (auto s : triangles) {
      for (auto v : s.first) {
        ofs << v << " ";
      }
      ofs << s.second << std::endl;
    }

    ofs_bb << triangles_scalar_range.size() << " 1\n";
    for (auto& b : triangles_scalar_range) ofs_bb << b << "\n";

  } else {
    ofs << "MeshVersionFormatted 1\nDimension 3\n";
    ofs_bb << "3 1 ";
    ofs << "Vertices\n" << vertex_points.size() << "\n";
    for (auto p : vertex_points) {
      ofs << p[0] << " " << p[1] << " " << p[2] << " 2\n";
    }
    ofs << "Edges " << edges.size() << "\n";
    for (auto e : edges) {
      for (auto v : e.first) ofs << v << " ";
      ofs << e.second << std::endl;
    }
    ofs << "Triangles " << triangles.size() << "\n";
    for (auto s : triangles) {
      for (auto v : s.first) {
        ofs << v << " ";
      }
      ofs << s.second << std::endl;
    }
    ofs << "Tetrahedra " << tetrahedra.size() << "\n";
    for (auto s : tetrahedra) {
      for (auto v : s.first) {
        ofs << v << " ";
      }
      ofs << s.second << std::endl;
    }

    ofs_bb << triangles_scalar_range.size() + tetrahedra_scalar_range.size() << " 1\n";
    for (auto& b : triangles_scalar_range) ofs_bb << b << "\n";
    for (auto& b : tetrahedra_scalar_range) ofs_bb << b << "\n";
  }

  ofs.close();
  ofs_bb.close();
}

}  // namespace coxeter_triangulation

}  // namespace Gudhi

#endif