summaryrefslogtreecommitdiff
path: root/src/Coxeter_triangulation/include/gudhi/Permutahedral_representation/Permutation_iterator.h
blob: 0f91d41ceb449232d6c19744bf763e5afed8d509 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2019 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef PERMUTAHEDRAL_REPRESENTATION_PERMUTATION_ITERATOR_H_
#define PERMUTAHEDRAL_REPRESENTATION_PERMUTATION_ITERATOR_H_

#include <cstdlib>  // for std::size_t
#include <vector>

#include <boost/range/iterator_range.hpp>

namespace Gudhi {

namespace coxeter_triangulation {

typedef unsigned uint;

/** \brief Class that allows the user to generate permutations.
 *   Based on the optimization of the Heap's algorithm by Sedgewick.
 */
class Permutation_iterator
    : public boost::iterator_facade<Permutation_iterator, std::vector<uint> const, boost::forward_traversal_tag> {
  using value_t = std::vector<uint>;

 private:
  friend class boost::iterator_core_access;

  bool equal(Permutation_iterator const& other) const { return (is_end_ && other.is_end_); }

  value_t const& dereference() const { return value_; }

  void swap_two_indices(std::size_t i, std::size_t j) {
    uint t = value_[i];
    value_[i] = value_[j];
    value_[j] = t;
  }

  void elementary_increment() {
    uint j = 0;
    while (d_[j] == j + 1) {
      d_[j] = 0;
      ++j;
    }
    if (j == n_ - 1) {
      is_end_ = true;
      return;
    }
    uint k = j + 1;
    uint x = (k % 2 ? d_[j] : 0);
    swap_two_indices(k, x);
    ++d_[j];
  }

  void elementary_increment_optim_3() {
    if (ct_ != 0) {
      --ct_;
      swap_two_indices(1 + (ct_ % 2), 0);
    } else {
      ct_ = 5;
      uint j = 2;
      while (d_[j] == j + 1) {
        d_[j] = 0;
        ++j;
      }
      if (j == n_ - 1) {
        is_end_ = true;
        return;
      }
      uint k = j + 1;
      uint x = (k % 2 ? d_[j] : 0);
      swap_two_indices(k, x);
      ++d_[j];
    }
  }

  void increment() {
    if (optim_3_)
      elementary_increment_optim_3();
    else
      elementary_increment();
  }

 public:
  Permutation_iterator(const uint& n) : value_(n), is_end_(n == 0), optim_3_(n >= 3), n_(n), d_(n), ct_(5) {
    for (uint i = 0; i < n; ++i) {
      value_[i] = i;
      d_[i] = 0;
    }
    if (n > 0) d_[n - 1] = -1;
  }

  // Used for the creating an end iterator
  Permutation_iterator() : is_end_(true), n_(0) {}

  void reinitialize() {
    if (n_ > 0) is_end_ = false;
  }

 private:
  value_t value_;  // the dereference value
  bool is_end_;    // is true when the current permutation is the final one
  bool optim_3_;   // true if n>=3. for n >= 3, the algorithm is optimized

  uint n_;
  std::vector<uint> d_;  // mix radix digits with radix [2 3 4 ... n-1 (sentinel=-1)]
  uint ct_;              // counter with values in {0,...,5} used in the n>=3 optimization.
};

}  // namespace coxeter_triangulation

}  // namespace Gudhi

#endif