summaryrefslogtreecommitdiff
path: root/src/Hasse_complex/include/gudhi/Hasse_complex.h
blob: 7adfc42189b3c6735bcb31e564677b6123640ce8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
 /*    This file is part of the Gudhi Library. The Gudhi library 
  *    (Geometric Understanding in Higher Dimensions) is a generic C++ 
  *    library for computational topology.
  *
  *    Author(s):       Clément Maria
  *
  *    Copyright (C) 2014  INRIA Sophia Antipolis-Méditerranée (France)
  *
  *    This program is free software: you can redistribute it and/or modify
  *    it under the terms of the GNU General Public License as published by
  *    the Free Software Foundation, either version 3 of the License, or
  *    (at your option) any later version.
  *
  *    This program is distributed in the hope that it will be useful,
  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  *    GNU General Public License for more details.
  *
  *    You should have received a copy of the GNU General Public License
  *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
  */

#ifndef GUDHI_HASSE_DIAGRAM_H
#define GUDHI_HASSE_DIAGRAM_H

#include <algorithm>
#include <boost/iterator/counting_iterator.hpp>

namespace Gudhi{

template < class HasseCpx >
struct Hasse_simplex 
{
//Complex_ds must verify that cpx->key(sh) is the order of sh in the filtration
  template< class Complex_ds >
  Hasse_simplex ( Complex_ds &                        cpx
                , typename Complex_ds::Simplex_handle sh )
  : key_(cpx.key(sh))
  , filtration_(cpx.filtration(sh))
  , boundary_()
  {
    boundary_.reserve(cpx.dimension(sh)+1);
    for( auto b_sh : cpx.boundary_simplex_range(sh) )
    { boundary_.push_back( cpx.key(b_sh) ); }
  }

  Hasse_simplex ( typename HasseCpx::Simplex_key key
                , typename HasseCpx::Filtration_value fil
                , std::vector<typename HasseCpx::Simplex_handle> boundary)
  : key_(key)
  , filtration_(fil)
  , boundary_(boundary) {}

  typename HasseCpx::Simplex_key                 key_;
  typename HasseCpx::Filtration_value            filtration_;
  std::vector<typename HasseCpx::Simplex_handle> boundary_;
};



/** \brief Data structure representing a Hasse diagram, i.e. 
  * a complex where all codimension 1 incidence 
  * relations are explicitly encoded.
  *
  * \implements FilteredComplex. 
  * \ingroup simplex_tree
  */
template < typename FiltrationValue     = double
         , typename SimplexKey          = int   
         , typename VertexHandle        = int 
         >
class Hasse_complex 
{
public:

  typedef Hasse_simplex<Hasse_complex>         Hasse_simp;
  typedef FiltrationValue                      Filtration_value;
  typedef SimplexKey                           Simplex_key;
  typedef int                                  Simplex_handle; //index in vector complex_

  typedef boost::counting_iterator< Simplex_handle >          Filtration_simplex_iterator;
  typedef boost::iterator_range<Filtration_simplex_iterator>  Filtration_simplex_range;  

  typedef typename std::vector< Simplex_handle >::iterator    Boundary_simplex_iterator;
  typedef boost::iterator_range<Boundary_simplex_iterator>    Boundary_simplex_range;  

  typedef typename std::vector< Simplex_handle >::iterator    Skeleton_simplex_iterator;
  typedef boost::iterator_range< Skeleton_simplex_iterator >  Skeleton_simplex_range;


/*  only dimension 0 skeleton_simplex_range(...) */
  Skeleton_simplex_range skeleton_simplex_range( int dim = 0 ) {
    if(dim != 0) { std::cerr << "Dimension must be 0 \n"; }
    return Skeleton_simplex_range(vertices_.begin(),vertices_.end());
  }

  template < class Complex_ds >
  Hasse_complex(Complex_ds & cpx)
  : complex_()
  , vertices_()
  , threshold_(cpx.filtration())
  , num_vertices_()
  , dim_max_(cpx.dimension())
  {
    complex_.reserve(cpx.num_simplices());
    int idx = 0;
    for(auto cpx_sh : cpx.filtration_simplex_range())
    { 
      complex_.push_back(Hasse_simp(cpx,cpx_sh)); 
      if(dimension(idx) == 0) { vertices_.push_back(idx); } 
      ++idx; 
    }
  }

  Hasse_complex()
  : complex_()
  , vertices_()
  , threshold_(0)
  , num_vertices_(0)
  , dim_max_(-1) {}

  size_t num_simplices() { return complex_.size(); }

  Filtration_simplex_range filtration_simplex_range() 
  { return Filtration_simplex_range( Filtration_simplex_iterator(0)
                                   , Filtration_simplex_iterator(complex_.size()) ); }

  Simplex_key key( Simplex_handle sh ) { return complex_[sh].key_; }

  Simplex_key null_key() { return -1; }

  Simplex_handle simplex( Simplex_key key ) 
  {
    if(key == null_key()) return null_simplex();
    return key;
  }

  Simplex_handle null_simplex() { return -1; }

  Filtration_value filtration( Simplex_handle sh ) {
    if( sh == null_simplex() ) { return filtration(); }
    return complex_[sh].filtration_;
  }

  Filtration_value filtration() { return threshold_; }

  int dimension ( Simplex_handle sh ) { 
    if(complex_[sh].boundary_.empty()) return 0;
    return complex_[sh].boundary_.size()-1; 
  }
  int dimension () { return dim_max_; }

  std::pair<Simplex_handle,Simplex_handle> endpoints( Simplex_handle sh ) 
  { return std::pair<Simplex_handle,Simplex_handle>( complex_[sh].boundary_[0]
                                                   , complex_[sh].boundary_[1] ) ;}

  void assign_key( Simplex_handle sh, Simplex_key key) { complex_[sh].key_ = key; }

  Boundary_simplex_range boundary_simplex_range ( Simplex_handle sh ) 
  { return Boundary_simplex_range( complex_[sh].boundary_.begin()
                                 , complex_[sh].boundary_.end() ); }

  void display_simplex(Simplex_handle sh)
  {
    std::cout << dimension(sh) << "  ";
    for(auto sh_b : boundary_simplex_range(sh)) std::cout << sh_b << " ";
    std::cout << "  " << filtration(sh) << "         key=" << key(sh);
  }

  void initialize_filtration()
  {
    Simplex_key key = 0;
    for(auto & h_simp : complex_) { h_simp.key_ = key; ++key; }
  }

  std::vector< Hasse_simp >   complex_;
  std::vector<Simplex_handle> vertices_;
  Filtration_value            threshold_;
  size_t                      num_vertices_;
  int                         dim_max_;
};

template< typename T1, typename T2, typename T3 >
std::istream& operator>> ( std::istream                & is 
                         , Hasse_complex< T1, T2, T3 > & hcpx )
{
  assert(hcpx.num_simplices() == 0);

  size_t num_simp;
  is >> num_simp;
  hcpx.complex_.reserve(num_simp); 

  std::vector< typename Hasse_complex<T1,T2,T3>::Simplex_key >  boundary;
  typename Hasse_complex<T1,T2,T3>::Filtration_value            fil;
  typename Hasse_complex<T1,T2,T3>::Filtration_value            max_fil = 0 ;
  int                                                           max_dim = -1;
  int                                                           key     = 0 ;
  while(read_hasse_simplex( is, boundary, fil )) //read all simplices in the file as a list of vertices
  {
    //insert every simplex in the simplex tree
    hcpx.complex_.push_back( Hasse_simplex< Hasse_complex<T1,T2,T3> >(key,fil,boundary));

    if(max_dim < hcpx.dimension(key)) { max_dim = hcpx.dimension(key); }
    if(hcpx.dimension(key) == 0)      { hcpx.vertices_.push_back(key); }
    if(max_fil < fil)                 { max_fil = fil;                 }

    ++key;
    boundary.clear();
  }

  hcpx.dim_max_ = max_dim;
  hcpx.threshold_ = max_fil;

  return is;
}

}  // namespace GUDHI

#endif // GUDHI_HASSE_DIAGRAM_H