summaryrefslogtreecommitdiff
path: root/src/Kernels/include/gudhi/kernel.h
blob: 3293cc62b5b05a12d9720203b91a6664b1c7b2d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Mathieu Carrière
 *
 *    Copyright (C) 2018  INRIA (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef KERNEL_H_
#define KERNEL_H_

#include <cstdlib>
#include <vector>
#include <algorithm>
#include <cmath>
#include <random>
#include <limits>          //for numeric_limits<>
#include <utility>         //for pair<>

#include <boost/math/constants/constants.hpp>


namespace Gudhi {
namespace kernel {

using PD = std::vector<std::pair<double,double> >;
double pi = boost::math::constants::pi<double>();




// ********************************************************************
// Utils.
// ********************************************************************

bool sortAngle(const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);}
bool myComp(const std::pair<int,double> & P1, const std::pair<int,double> & P2){return P1.second < P2.second;}

double pss_weight(std::pair<double,double> P){
  if(P.second > P.first)  return 1;
  else return -1;
}

double arctan_weight(std::pair<double,double> P){
  return atan(P.second - P.first);
}

// Compute the angle formed by two points of a PD
double compute_angle(const PD & PersDiag, const int & i, const int & j){
  std::pair<double,double> vect; double x1,y1, x2,y2;
  x1 = PersDiag[i].first; y1 = PersDiag[i].second;
  x2 = PersDiag[j].first; y2 = PersDiag[j].second;
  if (y1 - y2 > 0){
    vect.first = y1 - y2;
    vect.second = x2 - x1;}
  else{
    if(y1 - y2 < 0){
      vect.first = y2 - y1;
      vect.second = x1 - x2;
    }
    else{
      vect.first = 0;
      vect.second = abs(x1 - x2);}
  }
  double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second);
  return asin(vect.second/norm);
}

// Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
double compute_int_cos(const double & alpha, const double & beta){
  double res = 0;
  if (alpha >= 0 && alpha <= pi){
    if (cos(alpha) >= 0){
      if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
      else{res = sin(beta)-sin(alpha);}
    }
    else{
      if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);}
      else{res = sin(alpha)-sin(beta);}
    }
  }
  if (alpha >= -pi && alpha <= 0){
    if (cos(alpha) <= 0){
      if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);}
      else{res = sin(alpha)-sin(beta);}
    }
    else{
      if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
      else{res = sin(beta)-sin(alpha);}
    }
  }
  return res;
}

double compute_int(const double & theta1, const double & theta2, const int & p, const int & q, const PD & PD1, const PD & PD2){
  double norm = std::sqrt(  (PD1[p].first-PD2[q].first)*(PD1[p].first-PD2[q].first) + (PD1[p].second-PD2[q].second)*(PD1[p].second-PD2[q].second)  );
  double angle1;
  if (PD1[p].first > PD2[q].first)
    angle1 = theta1 - asin( (PD1[p].second-PD2[q].second)/norm  );
  else
    angle1 = theta1 - asin( (PD2[q].second-PD1[p].second)/norm  );
  double angle2 = angle1 + theta2 - theta1;
  double integral = compute_int_cos(angle1,angle2);
  return norm*integral;
}

template<class Weight = std::function<double (std::pair<double,double>) > >
std::vector<std::pair<double,double> > Fourier_feat(PD D, std::vector<std::pair<double,double> > Z, Weight weight = arctan_weight){
  int m = D.size(); std::vector<std::pair<double,double> > B; int M = Z.size();
  for(int i = 0; i < M; i++){
    double d1 = 0; double d2 = 0; double zx = Z[i].first; double zy = Z[i].second;
    for(int j = 0; j < m; j++){
      double x = D[j].first; double y = D[j].second;
      d1 += weight(D[j])*cos(x*zx + y*zy);
      d2 += weight(D[j])*sin(x*zx + y*zy);
    }
    B.emplace_back(d1,d2);
  }
  return B;
}

std::vector<std::pair<double,double> > random_Fourier(double sigma, int M = 1000){
  std::normal_distribution<double> distrib(0,1); std::vector<std::pair<double,double> > Z; std::random_device rd;
  for(int i = 0; i < M; i++){
    std::mt19937 e1(rd()); std::mt19937 e2(rd());
    double zx = distrib(e1); double zy = distrib(e2);
    Z.emplace_back(zx/sigma,zy/sigma);
  }
  return Z;
}










// ********************************************************************
// Kernel computation.
// ********************************************************************





/** \brief Computes the Linear Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
 * \ingroup kernel
 *
 * @param[in] PD1       first persistence diagram.
 * @param[in] PD2       second persistence diagram.
 * @param[in] sigma     bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
 * @param[in] weight    weight function for the points in the diagrams.
 * @param[in] M         number of Fourier features (set -1 for exact computation).
 *
 */
template<class Weight = std::function<double (std::pair<double,double>) > >
double linear_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight, int M = 1000){

  if(M == -1){
    int num_pts1 = PD1.size(); int num_pts2 = PD2.size(); double k = 0;
    for(int i = 0; i < num_pts1; i++)
      for(int j = 0; j < num_pts2; j++)
        k += weight(PD1[i])*weight(PD2[j])*exp(-((PD1[i].first-PD2[j].first)*(PD1[i].first-PD2[j].first) + (PD1[i].second-PD2[j].second)*(PD1[i].second-PD2[j].second))/(2*sigma*sigma));
    return k;
  }
  else{
    std::vector<std::pair<double,double> > Z =  random_Fourier(sigma, M);
    std::vector<std::pair<double,double> > B1 = Fourier_feat(PD1,Z,weight);
    std::vector<std::pair<double,double> > B2 = Fourier_feat(PD2,Z,weight);
    double d = 0; for(int i = 0; i < M; i++) d += B1[i].first*B2[i].first + B1[i].second*B2[i].second;
    return d/M;
  }
}

/** \brief Computes the Persistence Scale Space Kernel between two persistence diagrams with random Fourier features.
 * \ingroup kernel
 *
 * @param[in] PD1       first persistence diagram.
 * @param[in] PD2       second persistence diagram.
 * @param[in] sigma     bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
 * @param[in] M         number of Fourier features (set -1 for exact computation).
 *
 */
double persistence_scale_space_kernel(const PD & PD1, const PD & PD2, double sigma, int M = 1000){
  PD pd1 = PD1; int numpts = PD1.size();    for(int i = 0; i < numpts; i++)  pd1.emplace_back(PD1[i].second,PD1[i].first);
  PD pd2 = PD2;     numpts = PD2.size();    for(int i = 0; i < numpts; i++)  pd2.emplace_back(PD2[i].second,PD2[i].first);
  return linear_persistence_weighted_gaussian_kernel(pd1, pd2, 2*sqrt(sigma), pss_weight, M) / (2*8*pi*sigma);
}


/** \brief Computes the Gaussian Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
 * \ingroup kernel
 *
 * @param[in] PD1       first persistence diagram.
 * @param[in] PD2       second persistence diagram.
 * @param[in] sigma     bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
 * @param[in] tau       bandwidth parameter of the Gaussian Kernel used between the embeddings.
 * @param[in] weight    weight function for the points in the diagrams.
 * @param[in] M         number of Fourier features (set -1 for exact computation).
 *
 */
template<class Weight = std::function<double (std::pair<double,double>) > >
double gaussian_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, double tau, Weight weight = arctan_weight, int M = 1000){
  double k1 = linear_persistence_weighted_gaussian_kernel(PD1,PD1,sigma,weight,M);
  double k2 = linear_persistence_weighted_gaussian_kernel(PD2,PD2,sigma,weight,M);
  double k3 = linear_persistence_weighted_gaussian_kernel(PD1,PD2,sigma,weight,M);
  return exp( - (k1+k2-2*k3) / (2*tau*tau)  );
}


/** \brief Computes the Sliced Wasserstein Kernel between two persistence diagrams with sampled directions.
 * \ingroup kernel
 *
 * @param[in] PD1       first persistence diagram.
 * @param[in] PD2       second persistence diagram.
 * @param[in] sigma     bandwidth parameter.
 * @param[in] N         number of points sampled on the circle (set -1 for exact computation).
 *
 */
double sliced_wasserstein_kernel(PD PD1, PD PD2, double sigma, int N = 100){

  if(N == -1){

    // Add projections onto diagonal.
    int n1, n2; n1 = PD1.size(); n2 = PD2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
    for (int i = 0; i < n2; i++){
      max_ordinate = std::max(max_ordinate, PD2[i].second);
      PD1.emplace_back(  (PD2[i].first+PD2[i].second)/2, (PD2[i].first+PD2[i].second)/2  );
    }
    for (int i = 0; i < n1; i++){
      max_ordinate = std::max(max_ordinate, PD1[i].second);
      PD2.emplace_back(  (PD1[i].first+PD1[i].second)/2, (PD1[i].first+PD1[i].second)/2  );
    }
    int num_pts_dgm = PD1.size();

    // Slightly perturb the points so that the PDs are in generic positions.
    int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
    double thresh = pow(10,-5+mag);
    srand(time(NULL));
    for (int i = 0; i < num_pts_dgm; i++){
      PD1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
      PD2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
    }

    // Compute all angles in both PDs.
    std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
    for (int i = 0; i < num_pts_dgm; i++){
      for (int j = i+1; j < num_pts_dgm; j++){
        double theta1 = compute_angle(PD1,i,j); double theta2 = compute_angle(PD2,i,j);
        angles1.emplace_back(theta1, std::pair<int,int>(i,j));
        angles2.emplace_back(theta2, std::pair<int,int>(i,j));
      }
    }

    // Sort angles.
    std::sort(angles1.begin(), angles1.end(), sortAngle); std::sort(angles2.begin(), angles2.end(), sortAngle);

    // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
    std::vector<int> orderp1, orderp2;
    for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
    std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(PD1[i].second != PD1[j].second) return (PD1[i].second < PD1[j].second); else return (PD1[i].first > PD1[j].first); } );
    std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(PD2[i].second != PD2[j].second) return (PD2[i].second < PD2[j].second); else return (PD2[i].first > PD2[j].first); } );

    // Find the inverses of the orders.
    std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
    for(int i = 0; i < num_pts_dgm; i++)  for (int j = 0; j < num_pts_dgm; j++)  if(orderp1[j] == i){  order1[i] = j; break;  }
    for(int i = 0; i < num_pts_dgm; i++)  for (int j = 0; j < num_pts_dgm; j++)  if(orderp2[j] == i){  order2[i] = j; break;  }

    // Record all inversions of points in the orders as theta varies along the positive half-disk.
    std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
    std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);

    int M1 = angles1.size();
    for (int i = 0; i < M1; i++){
      double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
      anglePerm1[order1[p]].emplace_back(p,theta);
      anglePerm1[order1[q]].emplace_back(q,theta);
      int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
    }

    int M2 = angles2.size();
    for (int i = 0; i < M2; i++){
      double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
      anglePerm2[order2[p]].emplace_back(p,theta);
      anglePerm2[order2[q]].emplace_back(q,theta);
      int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
    }

    for (int i = 0; i < num_pts_dgm; i++){
      anglePerm1[order1[i]].emplace_back(i,pi/2);
      anglePerm2[order2[i]].emplace_back(i,pi/2);
    }

    // Compute the SW distance with the list of inversions.
    double sw = 0;
    for (int i = 0; i < num_pts_dgm; i++){
      std::vector<std::pair<int,double> > U,V; U = anglePerm1[i]; V = anglePerm2[i];
      double theta1, theta2; theta1 = -pi/2;
      unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(U[ku].second,V[kv].second);
      while(theta1 != pi/2){
        if(PD1[U[ku].first].first != PD2[V[kv].first].first || PD1[U[ku].first].second != PD2[V[kv].first].second)
          if(theta1 != theta2)
            sw += compute_int(theta1, theta2, U[ku].first, V[kv].first, PD1, PD2);
        theta1 = theta2;
        if (  (theta2 == U[ku].second)  &&  ku < U.size()-1  )  ku++;
        if (  (theta2 == V[kv].second)  &&  kv < V.size()-1  )  kv++;
        theta2 = std::min(U[ku].second, V[kv].second);
      }
    }

    return exp( -(sw/pi)/(2*sigma*sigma) );

  }


  else{
    double step = pi/N; double sw = 0;

    // Add projections onto diagonal.
    int n1, n2; n1 = PD1.size(); n2 = PD2.size();
    for (int i = 0; i < n2; i++)
      PD1.emplace_back(  (PD2[i].first + PD2[i].second)/2,  (PD2[i].first + PD2[i].second)/2  );
    for (int i = 0; i < n1; i++)
      PD2.emplace_back(  (PD1[i].first + PD1[i].second)/2,  (PD1[i].first + PD1[i].second)/2  );
    int n = PD1.size();

    // Sort and compare all projections.
    //#pragma omp parallel for
    for (int i = 0; i < N; i++){
      std::vector<std::pair<int,double> > L1, L2;
      for (int j = 0; j < n; j++){
        L1.emplace_back(   j, PD1[j].first*cos(-pi/2+i*step) + PD1[j].second*sin(-pi/2+i*step)   );
        L2.emplace_back(   j, PD2[j].first*cos(-pi/2+i*step) + PD2[j].second*sin(-pi/2+i*step)   );
      }
      std::sort(L1.begin(),L1.end(), myComp); std::sort(L2.begin(),L2.end(), myComp);
      double f = 0; for (int j = 0; j < n; j++)  f += std::abs(L1[j].second - L2[j].second);
      sw += f*step;
    }
    return exp( -(sw/pi)/(2*sigma*sigma) );
  }
}


} // namespace kernel

} // namespace Gudhi

#endif //KERNEL_H_