summaryrefslogtreecommitdiff
path: root/src/Persistence_representations/include/gudhi/Persistence_heat_maps.h
blob: b1af350310d1bfebb5f7437d0a36f7235ed1f8e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Pawel Dlotko and Mathieu Carriere
 *
 *    Modifications:
 *      - 2018/04 MC: Add discrete/non-discrete mechanism and non-discrete version
 *
 *    Copyright (C) 2019 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef PERSISTENCE_HEAT_MAPS_H_
#define PERSISTENCE_HEAT_MAPS_H_

// gudhi include
#include <gudhi/read_persistence_from_file.h>
#include <gudhi/common_persistence_representations.h>

// standard include
#include <vector>
#include <sstream>
#include <iostream>
#include <cmath>
#include <limits>
#include <algorithm>
#include <utility>
#include <string>
#include <functional>

namespace Gudhi {
namespace Persistence_representations {

/**
 * This is a simple procedure to create n by n (or 2*pixel_radius times 2*pixel_radius cubical approximation of a
 *Gaussian kernel.
 **/
std::vector<std::vector<double> > create_Gaussian_filter(size_t pixel_radius, double sigma) {
  bool dbg = false;
  // we are computing the kernel mask to 2 standard deviations away from the center. We discretize it in a grid of a
  // size 2*pixel_radius times 2*pixel_radius.

  double r = 0;
  double sigma_sqr = sigma * sigma;

  // sum is for normalization
  double sum = 0;

  // initialization of a kernel:
  std::vector<std::vector<double> > kernel(2 * pixel_radius + 1);
  for (size_t i = 0; i != kernel.size(); ++i) {
    std::vector<double> v(2 * pixel_radius + 1, 0);
    kernel[i] = v;
  }

  if (dbg) {
    std::cerr << "Kernel initialize \n";
    std::cerr << "pixel_radius : " << pixel_radius << std::endl;
    std::cerr << "kernel.size() : " << kernel.size() << std::endl;
    getchar();
  }

  for (int x = -pixel_radius; x <= static_cast<int>(pixel_radius); x++) {
    for (int y = -pixel_radius; y <= static_cast<int>(pixel_radius); y++) {
      double real_x = 2 * sigma * x / pixel_radius;
      double real_y = 2 * sigma * y / pixel_radius;
      r = std::sqrt(real_x * real_x + real_y * real_y);
      kernel[x + pixel_radius][y + pixel_radius] = (exp(-(r * r) / sigma_sqr)) / (3.141592 * sigma_sqr);
      sum += kernel[x + pixel_radius][y + pixel_radius];
    }
  }

  // normalize the kernel
  for (size_t i = 0; i != kernel.size(); ++i) {
    for (size_t j = 0; j != kernel[i].size(); ++j) {
      kernel[i][j] /= sum;
    }
  }

  if (dbg) {
    std::cerr << "Here is the kernel : \n";
    for (size_t i = 0; i != kernel.size(); ++i) {
      for (size_t j = 0; j != kernel[i].size(); ++j) {
        std::cerr << kernel[i][j] << " ";
      }
      std::cerr << std::endl;
    }
  }
  return kernel;
}

/*
 * There are various options to scale the points depending on their location. One can for instance:
 * (1) do nothing (scale all of them with the weight 1), as in the function constant_function
 * (2) Scale them by the distance to the diagonal. This is implemented in function
 * (3) Scale them with the square of their distance to diagonal. This is implemented in function
 * (4) Scale them with
 */

/**
 * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
 *diagram.
 * This particular functionality is a function which always assign value 1 to a point in the diagram.
 **/
class constant_scaling_function {
 public:
  double operator()(const std::pair<double, double>& point_in_diagram) { return 1; }
};

/**
 * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
 *diagram.
 * The scaling given by this function to a point (b,d) is Euclidean distance of (b,d) from diagonal.
 **/
class distance_from_diagonal_scaling {
 public:
  double operator()(const std::pair<double, double>& point_in_diagram) {
    // (point_in_diagram.first+point_in_diagram.second)/2.0
    return std::sqrt(std::pow((point_in_diagram.first - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2) +
                     std::pow((point_in_diagram.second - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2));
  }
};

/**
 * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
 *diagram.
 * The scaling given by this function to a point (b,d) is a square of Euclidean distance of (b,d) from diagonal.
 **/
class squared_distance_from_diagonal_scaling {
 public:
  double operator()(const std::pair<double, double>& point_in_diagram) {
    return std::pow((point_in_diagram.first - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2) +
           std::pow((point_in_diagram.second - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2);
  }
};

/**
 * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
 *diagram.
 * The scaling given by this function to a point (b,d) is an arctan of a persistence of a point (i.e. arctan( b-d ).
 **/
class arc_tan_of_persistence_of_point {
 public:
  double operator()(const std::pair<double, double>& point_in_diagram) {
    return atan(point_in_diagram.second - point_in_diagram.first);
  }
};

/**
 * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
 *diagram.
 * This scaling function do not only depend on a point (p,d) in the diagram, but it depends on the whole diagram.
 * The longest persistence pair get a scaling 1. Any other pair get a scaling belong to [0,1], which is proportional
 * to the persistence of that pair.
 **/
class weight_by_setting_maximal_interval_to_have_length_one {
 public:
  weight_by_setting_maximal_interval_to_have_length_one(double len) : length_of_maximal_interval(len) {}
  double operator()(const std::pair<double, double>& point_in_diagram) {
    return (point_in_diagram.second - point_in_diagram.first) / this->length_of_maximal_interval;
  }

 private:
  double length_of_maximal_interval;
};

/**
 * \class Persistence_heat_maps Persistence_heat_maps.h gudhi/Persistence_heat_maps.h
 * \brief A class implementing persistence heat maps.
 *
 * \ingroup Persistence_representations
 **/

// This class implements the following concepts: Vectorized_topological_data, Topological_data_with_distances,
// Real_valued_topological_data, Topological_data_with_averages, Topological_data_with_scalar_product
template <typename Scalling_of_kernels = constant_scaling_function>
class Persistence_heat_maps {
 public:
  /**
   * The default constructor. A scaling function from the diagonal is set up to a constant function. The image is not
   *erased below the diagonal. The Gaussian have diameter 5.
   **/
  Persistence_heat_maps() {
    Scalling_of_kernels f;
    this->f = f;
    this->erase_below_diagonal = false;
    this->min_ = this->max_ = 0;
    this->set_up_parameters_for_basic_classes();
  }

  /**
   * Construction that takes at the input the following parameters:
   * (1) A vector of pairs of doubles (representing persistence intervals). All other parameters are optional. They are:
   * (2) a Gaussian filter generated by create_Gaussian_filter filter (the default value of this variable is a Gaussian
   *filter of a radius 5),
   * (3) a boolean value which determines if the area of image below diagonal should, or should not be erased (it will
   *be erased by default).
   * (4) a number of pixels in each direction (set to 1000 by default).
   * (5) a min x and y value of points that are to be taken into account. By default it is set to
   *std::numeric_limits<double>::max(), in which case the program compute the values based on the data,
   * (6) a max x and y value of points that are to be taken into account. By default it is set to
   *std::numeric_limits<double>::max(), in which case the program compute the values based on the data.
   **/
  Persistence_heat_maps(const std::vector<std::pair<double, double> >& interval,
                        std::vector<std::vector<double> > filter = create_Gaussian_filter(5, 1),
                        bool erase_below_diagonal = false, size_t number_of_pixels = 1000,
                        double min_ = std::numeric_limits<double>::max(),
                        double max_ = std::numeric_limits<double>::max());

  /**
   * Construction that takes at the input a name of a file with persistence intervals, a filter (radius 5 by
   *default), a scaling function (constant by default), a boolean value which determines if the area of image below
   *diagonal should, or should not be erased (should by default). The next parameter is the number of pixels in each
   *direction (set to 1000 by default) and min and max values of images (both set to std::numeric_limits<double>::max()
   *by default. If this is the case, the program will pick the right values based on the data).
   **/
  /**
   * Construction that takes at the input the following parameters:
   * (1) A name of a file with persistence intervals. The file should be readable by the function
   *read_persistence_intervals_in_one_dimension_from_file. All other parameters are optional. They are:
   * (2) a Gaussian filter generated by create_Gaussian_filter filter (the default value of this variable is a Gaussian
   *filter of a radius 5),
   * (3) a boolean value which determines if the area of image below diagonal should, or should not be erased (it will
   *be erased by default).
   * (4) a number of pixels in each direction (set to 1000 by default).
   * (5) a min x and y value of points that are to be taken into account. By default it is set to
   *std::numeric_limits<double>::max(), in which case the program compute the values based on the data,
   * (6) a max x and y value of points that are to be taken into account. By default it is set to
   *std::numeric_limits<double>::max(), in which case the program compute the values based on the data.
   **/
  Persistence_heat_maps(const char* filename, std::vector<std::vector<double> > filter = create_Gaussian_filter(5, 1),
                        bool erase_below_diagonal = false, size_t number_of_pixels = 1000,
                        double min_ = std::numeric_limits<double>::max(),
                        double max_ = std::numeric_limits<double>::max(),
                        unsigned dimension = std::numeric_limits<unsigned>::max());

  /**
   * Construction that takes as inputs (1) the diagram, and (2) the grid parameters (min, max and number of samples for
   * x and y axes)
   **/
  Persistence_heat_maps(const std::vector<std::pair<double, double> >& interval,
                        const std::function<double(std::pair<double, double>, std::pair<double, double>)>& kernel,
                        size_t number_of_x_pixels, size_t number_of_y_pixels, double min_x = 0, double max_x = 1,
                        double min_y = 0, double max_y = 1);

  /**
   * Construction that takes only the diagram as input (weight and 2D kernel are template parameters)
   **/
  Persistence_heat_maps(const std::vector<std::pair<double, double> >& interval,
                        const std::function<double(std::pair<double, double>, std::pair<double, double>)>& kernel);

  /**
   * Compute a mean value of a collection of heat maps and store it in the current object. Note that all the persistence
   *maps send in a vector to this procedure need to have the same parameters.
   * If this is not the case, the program will throw an exception.
   **/
  void compute_mean(const std::vector<Persistence_heat_maps*>& maps);

  /**
   * Compute a median value of a collection of heat maps and store it in the current object. Note that all the
   *persistence maps send in a vector to this procedure need to have the same parameters.
   * If this is not the case, the program will throw an exception.
   **/
  void compute_median(const std::vector<Persistence_heat_maps*>& maps);

  /**
   * Compute a percentage of active (i.e) values above the cutoff of a collection of heat maps.
   **/
  void compute_percentage_of_active(const std::vector<Persistence_heat_maps*>& maps, size_t cutoff = 1);

  // put to file subroutine
  /**
   * The function outputs the persistence image to a text file. The format as follow:
   * In the first line, the values min and max of the image are stored
   * In the next lines, we have the persistence images in a form of a bitmap image.
   **/
  void print_to_file(const char* filename) const;

  /**
   * A function that load a heat map from file to the current object (and erase whatever was stored in the current
   *object before).
   **/
  void load_from_file(const char* filename);

  /**
   * The procedure checks if min_, max_ and this->heat_maps sizes are the same.
   **/
  inline bool check_if_the_same(const Persistence_heat_maps& second) const {
    bool dbg = false;
    if (this->heat_map.size() != second.heat_map.size()) {
      if (dbg)
        std::cerr << "this->heat_map.size() : " << this->heat_map.size()
                  << " \n second.heat_map.size() : " << second.heat_map.size() << std::endl;
      return false;
    }
    if (this->min_ != second.min_) {
      if (dbg) std::cerr << "this->min_ : " << this->min_ << ", second.min_ : " << second.min_ << std::endl;
      return false;
    }
    if (this->max_ != second.max_) {
      if (dbg) std::cerr << "this->max_ : " << this->max_ << ", second.max_ : " << second.max_ << std::endl;
      return false;
    }
    // in the other case we may assume that the persistence images are defined on the same domain.
    return true;
  }

  /**
   * Return minimal range value of persistent image.
   **/
  inline double get_min() const { return this->min_; }

  /**
   * Return maximal range value of persistent image.
   **/
  inline double get_max() const { return this->max_; }

  /**
   * Operator == to check if to persistence heat maps are the same.
   **/
  bool operator==(const Persistence_heat_maps& rhs) const {
    bool dbg = false;
    if (!this->check_if_the_same(rhs)) {
      if (dbg) std::cerr << "The domains are not the same \n";
      return false;  // in this case, the domains are not the same, so the maps cannot be the same.
    }
    for (size_t i = 0; i != this->heat_map.size(); ++i) {
      for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
        if (!almost_equal(this->heat_map[i][j], rhs.heat_map[i][j])) {
          if (dbg) {
            std::cerr << "this->heat_map[" << i << "][" << j << "] = " << this->heat_map[i][j] << std::endl;
            std::cerr << "rhs.heat_map[" << i << "][" << j << "] = " << rhs.heat_map[i][j] << std::endl;
          }
          return false;
        }
      }
    }
    return true;
  }

  /**
   * Operator != to check if to persistence heat maps are different.
   **/
  bool operator!=(const Persistence_heat_maps& rhs) const { return !((*this) == rhs); }

  /**
   * A function to generate a gnuplot script to visualize the persistent image.
   **/
  void plot(const char* filename) const;

  template <typename Operation_type>
  friend Persistence_heat_maps operation_on_pair_of_heat_maps(const Persistence_heat_maps& first,
                                                              const Persistence_heat_maps& second,
                                                              Operation_type operation) {
    // first check if the heat maps are compatible
    if (!first.check_if_the_same(second)) {
      std::cerr << "Sizes of the heat maps are not compatible. The program will now terminate \n";
      throw "Sizes of the heat maps are not compatible. The program will now terminate \n";
    }
    Persistence_heat_maps result;
    result.min_ = first.min_;
    result.max_ = first.max_;
    result.heat_map.reserve(first.heat_map.size());
    for (size_t i = 0; i != first.heat_map.size(); ++i) {
      std::vector<double> v;
      v.reserve(first.heat_map[i].size());
      for (size_t j = 0; j != first.heat_map[i].size(); ++j) {
        v.push_back(operation(first.heat_map[i][j], second.heat_map[i][j]));
      }
      result.heat_map.push_back(v);
    }
    return result;
  }  // operation_on_pair_of_heat_maps

  /**
   * Multiplication of Persistence_heat_maps by scalar (so that all values of the heat map gets multiplied by that
   *scalar).
   **/
  Persistence_heat_maps multiply_by_scalar(double scalar) const {
    Persistence_heat_maps result;
    result.min_ = this->min_;
    result.max_ = this->max_;
    result.heat_map.reserve(this->heat_map.size());
    for (size_t i = 0; i != this->heat_map.size(); ++i) {
      std::vector<double> v;
      v.reserve(this->heat_map[i].size());
      for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
        v.push_back(this->heat_map[i][j] * scalar);
      }
      result.heat_map.push_back(v);
    }
    return result;
  }

  /**
   * This function computes a sum of two objects of a type Persistence_heat_maps.
   **/
  friend Persistence_heat_maps operator+(const Persistence_heat_maps& first, const Persistence_heat_maps& second) {
    return operation_on_pair_of_heat_maps(first, second, std::plus<double>());
  }
  /**
   * This function computes a difference of two objects of a type Persistence_heat_maps.
   **/
  friend Persistence_heat_maps operator-(const Persistence_heat_maps& first, const Persistence_heat_maps& second) {
    return operation_on_pair_of_heat_maps(first, second, std::minus<double>());
  }
  /**
   * This function computes a product of an object of a type Persistence_heat_maps with real number.
   **/
  friend Persistence_heat_maps operator*(double scalar, const Persistence_heat_maps& A) {
    return A.multiply_by_scalar(scalar);
  }
  /**
   * This function computes a product of an object of a type Persistence_heat_maps with real number.
   **/
  friend Persistence_heat_maps operator*(const Persistence_heat_maps& A, double scalar) {
    return A.multiply_by_scalar(scalar);
  }
  /**
   * This function computes a product of an object of a type Persistence_heat_maps with real number.
   **/
  Persistence_heat_maps operator*(double scalar) { return this->multiply_by_scalar(scalar); }
  /**
   * += operator for Persistence_heat_maps.
   **/
  Persistence_heat_maps operator+=(const Persistence_heat_maps& rhs) {
    *this = *this + rhs;
    return *this;
  }
  /**
   * -= operator for Persistence_heat_maps.
   **/
  Persistence_heat_maps operator-=(const Persistence_heat_maps& rhs) {
    *this = *this - rhs;
    return *this;
  }
  /**
   * *= operator for Persistence_heat_maps.
   **/
  Persistence_heat_maps operator*=(double x) {
    *this = *this * x;
    return *this;
  }
  /**
   * /= operator for Persistence_heat_maps.
   **/
  Persistence_heat_maps operator/=(double x) {
    if (x == 0) throw("In operator /=, division by 0. Program terminated.");
    *this = *this * (1 / x);
    return *this;
  }

  // Implementations of functions for various concepts.

  /**
   * This function produce a vector of doubles based on a persistence heat map. It is required in a concept
   * Vectorized_topological_data
   */
  std::vector<double> vectorize(int number_of_function) const;
  /**
   * This function return the number of functions that allows vectorization of persistence heat map. It is required
   *in a concept Vectorized_topological_data.
   **/
  size_t number_of_vectorize_functions() const { return this->number_of_functions_for_vectorization; }

  /**
   * This function is required by the Real_valued_topological_data concept. It returns various projections on the
   *persistence heat map to a real line.
   * At the moment this function is not tested, since it is quite likely to be changed in the future. Given this, when
   *using it, keep in mind that it
   * will be most likely changed in the next versions.
   **/
  double project_to_R(int number_of_function) const;
  /**
   * The function gives the number of possible projections to R. This function is required by the
   *Real_valued_topological_data concept.
   **/
  size_t number_of_projections_to_R() const { return this->number_of_functions_for_projections_to_reals; }

  /**
   * A function to compute distance between persistence heat maps.
   * The parameter of this function is a const reference to an object of a class Persistence_heat_maps.
   * This function is required in Topological_data_with_distances concept.
   * For max norm distance, set power to std::numeric_limits<double>::max()
   **/
  double distance(const Persistence_heat_maps& second_, double power = 1) const;

  /**
   * A function to compute averaged persistence heat map, based on vector of persistence heat maps.
   * This function is required by Topological_data_with_averages concept.
   **/
  void compute_average(const std::vector<Persistence_heat_maps*>& to_average);

  /**
   * A function to compute scalar product of persistence heat maps.
   * The parameter of this function is a const reference to an object of a class Persistence_heat_maps.
   * This function is required in Topological_data_with_scalar_product concept.
   **/
  double compute_scalar_product(const Persistence_heat_maps& second_) const;

  // end of implementation of functions needed for concepts.

  /**
   * The x-range of the persistence heat map.
   **/
  std::pair<double, double> get_x_range() const { return std::make_pair(this->min_, this->max_); }

  /**
   * The y-range of the persistence heat map.
   **/
  std::pair<double, double> get_y_range() const { return this->get_x_range(); }

 protected:
  // private methods
  std::vector<std::vector<double> > check_and_initialize_maps(const std::vector<Persistence_heat_maps*>& maps);
  size_t number_of_functions_for_vectorization;
  size_t number_of_functions_for_projections_to_reals;
  void construct(const std::vector<std::pair<double, double> >& intervals_,
                 std::vector<std::vector<double> > filter = create_Gaussian_filter(5, 1),
                 bool erase_below_diagonal = false, size_t number_of_pixels = 1000,
                 double min_ = std::numeric_limits<double>::max(), double max_ = std::numeric_limits<double>::max());

  void set_up_parameters_for_basic_classes() {
    this->number_of_functions_for_vectorization = 1;
    this->number_of_functions_for_projections_to_reals = 1;
  }

  // Boolean indicating if we are computing persistence image (true) or persistence weighted gaussian kernel (false)
  bool discrete = true;
  std::function<double(std::pair<double, double>, std::pair<double, double>)> kernel;
  std::vector<std::pair<double, double> > interval;
  std::vector<double> weights;

  // data
  Scalling_of_kernels f;
  bool erase_below_diagonal;
  double min_;
  double max_;
  std::vector<std::vector<double> > heat_map;
};

template <typename Scalling_of_kernels>
Persistence_heat_maps<Scalling_of_kernels>::Persistence_heat_maps(
    const std::vector<std::pair<double, double> >& interval,
    const std::function<double(std::pair<double, double>, std::pair<double, double>)>& kernel,
    size_t number_of_x_pixels, size_t number_of_y_pixels, double min_x, double max_x, double min_y, double max_y) {
  this->discrete = true;
  this->min_ = min_x;
  this->max_ = max_x;
  this->heat_map.resize(number_of_y_pixels);
  double step_x = (max_x - min_x) / (number_of_x_pixels - 1);
  double step_y = (max_y - min_y) / (number_of_y_pixels - 1);

  int num_pts = interval.size();
  for (size_t i = 0; i < number_of_y_pixels; i++) {
    double y = min_y + i * step_y;
    this->heat_map[i].reserve(number_of_x_pixels);
    for (size_t j = 0; j < number_of_x_pixels; j++) {
      double x = min_x + j * step_x;
      std::pair<double, double> grid_point(x, y);
      double pixel_value = 0;
      for (int k = 0; k < num_pts; k++) pixel_value += this->f(interval[k]) * kernel(interval[k], grid_point);
      this->heat_map[i].push_back(pixel_value);
    }
  }
  this->set_up_parameters_for_basic_classes();
}

template <typename Scalling_of_kernels>
Persistence_heat_maps<Scalling_of_kernels>::Persistence_heat_maps(
    const std::vector<std::pair<double, double> >& interval,
    const std::function<double(std::pair<double, double>, std::pair<double, double>)>& kernel) {
  this->discrete = false;
  this->interval = interval;
  this->kernel = kernel;
  int num_pts = this->interval.size();
  for (int i = 0; i < num_pts; i++) this->weights.push_back(this->f(this->interval[i]));
  this->set_up_parameters_for_basic_classes();
}

// if min_ == max_, then the program is requested to set up the values itself based on persistence intervals
template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::construct(const std::vector<std::pair<double, double> >& intervals_,
                                                           std::vector<std::vector<double> > filter,
                                                           bool erase_below_diagonal, size_t number_of_pixels,
                                                           double min_, double max_) {
  bool dbg = false;
  if (dbg) std::cerr << "Entering construct procedure \n";
  Scalling_of_kernels f;
  this->f = f;

  if (dbg) std::cerr << "min and max passed to construct() procedure: " << min_ << " " << max_ << std::endl;

  if (min_ == max_) {
    if (dbg) std::cerr << "min and max parameters will be determined based on intervals \n";
    // in this case, we want the program to set up the min_ and max_ values by itself.
    min_ = std::numeric_limits<int>::max();
    max_ = -std::numeric_limits<int>::max();

    for (size_t i = 0; i != intervals_.size(); ++i) {
      if (intervals_[i].first < min_) min_ = intervals_[i].first;
      if (intervals_[i].second > max_) max_ = intervals_[i].second;
    }
    // now we have the structure filled in, and moreover we know min_ and max_ values of the interval, so we know the
    // range.

    // add some more space:
    min_ -= fabs(max_ - min_) / 100;
    max_ += fabs(max_ - min_) / 100;
  }

  if (dbg) {
    std::cerr << "min_ : " << min_ << std::endl;
    std::cerr << "max_ : " << max_ << std::endl;
    std::cerr << "number_of_pixels : " << number_of_pixels << std::endl;
    getchar();
  }

  this->min_ = min_;
  this->max_ = max_;

  // initialization of the structure heat_map
  std::vector<std::vector<double> > heat_map_;
  for (size_t i = 0; i != number_of_pixels; ++i) {
    std::vector<double> v(number_of_pixels, 0);
    heat_map_.push_back(v);
  }
  this->heat_map = heat_map_;

  if (dbg) std::cerr << "Done creating of the heat map, now we will fill in the structure \n";

  for (size_t pt_nr = 0; pt_nr != intervals_.size(); ++pt_nr) {
    // compute the value of intervals_[pt_nr] in the grid:
    int x_grid =
        static_cast<int>((intervals_[pt_nr].first - this->min_) / (this->max_ - this->min_) * number_of_pixels);
    int y_grid =
        static_cast<int>((intervals_[pt_nr].second - this->min_) / (this->max_ - this->min_) * number_of_pixels);

    if (dbg) {
      std::cerr << "point : " << intervals_[pt_nr].first << " , " << intervals_[pt_nr].second << std::endl;
      std::cerr << "x_grid : " << x_grid << std::endl;
      std::cerr << "y_grid : " << y_grid << std::endl;
    }

    // x_grid and y_grid gives a center of the kernel. We want to have its lower left corner. To get this, we need to
    // shift x_grid and y_grid by a grid diameter.
    x_grid -= filter.size() / 2;
    y_grid -= filter.size() / 2;
    // note that the numbers x_grid and y_grid may be negative.

    if (dbg) {
      std::cerr << "After shift : \n";
      std::cerr << "x_grid : " << x_grid << std::endl;
      std::cerr << "y_grid : " << y_grid << std::endl;
    }

    double scaling_value = this->f(intervals_[pt_nr]);

    for (size_t i = 0; i != filter.size(); ++i) {
      for (size_t j = 0; j != filter.size(); ++j) {
        // if the point (x_grid+i,y_grid+j) is the correct point in the grid.
        if (((x_grid + i) >= 0) && (x_grid + i < this->heat_map.size()) && ((y_grid + j) >= 0) &&
            (y_grid + j < this->heat_map.size())) {
          if (dbg) {
            std::cerr << y_grid + j << " " << x_grid + i << std::endl;
          }
          this->heat_map[y_grid + j][x_grid + i] += scaling_value * filter[i][j];
          if (dbg) {
            std::cerr << "Position : (" << x_grid + i << "," << y_grid + j
                      << ") got increased by the value : " << filter[i][j] << std::endl;
          }
        }
      }
    }
  }

  // now it remains to cut everything below diagonal if the user wants us to.
  if (erase_below_diagonal) {
    for (size_t i = 0; i != this->heat_map.size(); ++i) {
      for (size_t j = i; j != this->heat_map.size(); ++j) {
        this->heat_map[i][j] = 0;
      }
    }
  }
}  // construct

template <typename Scalling_of_kernels>
Persistence_heat_maps<Scalling_of_kernels>::Persistence_heat_maps(
    const std::vector<std::pair<double, double> >& interval, std::vector<std::vector<double> > filter,
    bool erase_below_diagonal, size_t number_of_pixels, double min_, double max_) {
  this->construct(interval, filter, erase_below_diagonal, number_of_pixels, min_, max_);
  this->set_up_parameters_for_basic_classes();
}

template <typename Scalling_of_kernels>
Persistence_heat_maps<Scalling_of_kernels>::Persistence_heat_maps(const char* filename,
                                                                  std::vector<std::vector<double> > filter,
                                                                  bool erase_below_diagonal, size_t number_of_pixels,
                                                                  double min_, double max_, unsigned dimension) {
  std::vector<std::pair<double, double> > intervals_;
  if (dimension == std::numeric_limits<unsigned>::max()) {
    intervals_ = read_persistence_intervals_in_one_dimension_from_file(filename);
  } else {
    intervals_ = read_persistence_intervals_in_one_dimension_from_file(filename, dimension);
  }
  this->construct(intervals_, filter, erase_below_diagonal, number_of_pixels, min_, max_);
  this->set_up_parameters_for_basic_classes();
}

template <typename Scalling_of_kernels>
std::vector<std::vector<double> > Persistence_heat_maps<Scalling_of_kernels>::check_and_initialize_maps(
    const std::vector<Persistence_heat_maps*>& maps) {
  // checking if all the heat maps are of the same size:
  for (size_t i = 0; i != maps.size(); ++i) {
    if (maps[i]->heat_map.size() != maps[0]->heat_map.size()) {
      std::cerr << "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
      throw "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
    }
    if (maps[i]->heat_map[0].size() != maps[0]->heat_map[0].size()) {
      std::cerr << "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
      throw "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
    }
  }
  std::vector<std::vector<double> > heat_maps(maps[0]->heat_map.size());
  for (size_t i = 0; i != maps[0]->heat_map.size(); ++i) {
    std::vector<double> v(maps[0]->heat_map[0].size(), 0);
    heat_maps[i] = v;
  }
  return heat_maps;
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::compute_median(const std::vector<Persistence_heat_maps*>& maps) {
  std::vector<std::vector<double> > heat_maps = this->check_and_initialize_maps(maps);

  std::vector<double> to_compute_median(maps.size());
  for (size_t i = 0; i != heat_maps.size(); ++i) {
    for (size_t j = 0; j != heat_maps[i].size(); ++j) {
      for (size_t map_no = 0; map_no != maps.size(); ++map_no) {
        to_compute_median[map_no] = maps[map_no]->heat_map[i][j];
      }
      std::nth_element(to_compute_median.begin(), to_compute_median.begin() + to_compute_median.size() / 2,
                       to_compute_median.end());
      heat_maps[i][j] = to_compute_median[to_compute_median.size() / 2];
    }
  }
  this->heat_map = heat_maps;
  this->min_ = maps[0]->min_;
  this->max_ = maps[0]->max_;
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::compute_mean(const std::vector<Persistence_heat_maps*>& maps) {
  std::vector<std::vector<double> > heat_maps = this->check_and_initialize_maps(maps);
  for (size_t i = 0; i != heat_maps.size(); ++i) {
    for (size_t j = 0; j != heat_maps[i].size(); ++j) {
      double mean = 0;
      for (size_t map_no = 0; map_no != maps.size(); ++map_no) {
        mean += maps[map_no]->heat_map[i][j];
      }
      heat_maps[i][j] = mean / static_cast<double>(maps.size());
    }
  }
  this->heat_map = heat_maps;
  this->min_ = maps[0]->min_;
  this->max_ = maps[0]->max_;
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::compute_percentage_of_active(
    const std::vector<Persistence_heat_maps*>& maps, size_t cutoff) {
  std::vector<std::vector<double> > heat_maps = this->check_and_initialize_maps(maps);

  for (size_t i = 0; i != heat_maps.size(); ++i) {
    for (size_t j = 0; j != heat_maps[i].size(); ++j) {
      size_t number_of_active_levels = 0;
      for (size_t map_no = 0; map_no != maps.size(); ++map_no) {
        if (maps[map_no]->heat_map[i][j]) number_of_active_levels++;
      }
      if (number_of_active_levels > cutoff) {
        heat_maps[i][j] = number_of_active_levels;
      } else {
        heat_maps[i][j] = 0;
      }
    }
  }
  this->heat_map = heat_maps;
  this->min_ = maps[0]->min_;
  this->max_ = maps[0]->max_;
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::plot(const char* filename) const {
  std::ofstream out;
  std::stringstream gnuplot_script;
  gnuplot_script << filename << "_GnuplotScript";

  out.open(gnuplot_script.str().c_str());
  out << "plot      '-' matrix with image" << std::endl;
  for (size_t i = 0; i != this->heat_map.size(); ++i) {
    for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
      out << this->heat_map[i][j] << " ";
    }
    out << std::endl;
  }
  out.close();
  std::cout << "To visualize, install gnuplot and type the command: gnuplot -persist -e \"load \'"
            << gnuplot_script.str().c_str() << "\'\"" << std::endl;
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::print_to_file(const char* filename) const {
  std::ofstream out;
  out.open(filename);

  // First we store this->min_ and this->max_ values:
  out << this->min_ << " " << this->max_ << std::endl;
  for (size_t i = 0; i != this->heat_map.size(); ++i) {
    for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
      out << this->heat_map[i][j] << " ";
    }
    out << std::endl;
  }
  out.close();
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::load_from_file(const char* filename) {
  bool dbg = false;

  std::ifstream in;
  in.open(filename);

  // checking if the file exist / if it was open.
  if (!in.good()) {
    std::cerr << "The file : " << filename << " do not exist. The program will now terminate \n";
    throw "The persistence landscape file do not exist. The program will now terminate \n";
  }

  // now we read the file one by one.

  in >> this->min_ >> this->max_;
  if (dbg) {
    std::cerr << "Reading the following values of min and max : " << this->min_ << " , " << this->max_ << std::endl;
  }

  std::string temp;
  std::getline(in, temp);
  while (in.good()) {
    std::getline(in, temp);
    std::stringstream lineSS;
    lineSS << temp;

    std::vector<double> line_of_heat_map;
    while (lineSS.good()) {
      double point;

      lineSS >> point;
      line_of_heat_map.push_back(point);
      if (dbg) {
        std::cout << point << " ";
      }
    }
    if (dbg) {
      std::cout << std::endl;
      getchar();
    }

    if (in.good()) this->heat_map.push_back(line_of_heat_map);
  }
  in.close();
  if (dbg) std::cout << "Done \n";
}

// Concretizations of virtual methods:
template <typename Scalling_of_kernels>
std::vector<double> Persistence_heat_maps<Scalling_of_kernels>::vectorize(int number_of_function) const {
  std::vector<double> result;
  if (!discrete) {
    std::cout << "No vectorize method in case of infinite dimensional vectorization" << std::endl;
    return result;
  }

  // convert this->heat_map into one large vector:
  size_t size_of_result = 0;
  for (size_t i = 0; i != this->heat_map.size(); ++i) {
    size_of_result += this->heat_map[i].size();
  }

  result.reserve(size_of_result);

  for (size_t i = 0; i != this->heat_map.size(); ++i) {
    for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
      result.push_back(this->heat_map[i][j]);
    }
  }

  return result;
}

template <typename Scalling_of_kernels>
double Persistence_heat_maps<Scalling_of_kernels>::distance(const Persistence_heat_maps& second, double power) const {
  if (this->discrete) {
    // first we need to check if (*this) and second are defined on the same domain and have the same dimensions:
    if (!this->check_if_the_same(second)) {
      std::cerr << "The persistence images are of non compatible sizes. We cannot therefore compute distance between "
                   "them. The program will now terminate";
      throw "The persistence images are of non compatible sizes. The program will now terminate";
    }

    // if we are here, we know that the two persistence images are defined on the same domain, so we can start
    // computing their distances:

    double distance = 0;
    if (power < std::numeric_limits<double>::max()) {
      for (size_t i = 0; i != this->heat_map.size(); ++i) {
        for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
          distance += std::pow(std::fabs(this->heat_map[i][j] - second.heat_map[i][j]), power);
        }
      }
    } else {
      // in this case, we compute max norm distance
      for (size_t i = 0; i != this->heat_map.size(); ++i) {
        for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
          if (distance < std::fabs(this->heat_map[i][j] - second.heat_map[i][j])) {
            distance = std::fabs(this->heat_map[i][j] - second.heat_map[i][j]);
          }
        }
      }
    }
    return distance;
  } else {
    return std::sqrt(this->compute_scalar_product(*this) + second.compute_scalar_product(second) -
                     2 * this->compute_scalar_product(second));
  }
}

template <typename Scalling_of_kernels>
double Persistence_heat_maps<Scalling_of_kernels>::project_to_R(int number_of_function) const {
  double result = 0;
  for (size_t i = 0; i != this->heat_map.size(); ++i) {
    for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
      result += this->heat_map[i][j];
    }
  }
  return result;
}

template <typename Scalling_of_kernels>
void Persistence_heat_maps<Scalling_of_kernels>::compute_average(
    const std::vector<Persistence_heat_maps*>& to_average) {
  this->compute_mean(to_average);
}

template <typename Scalling_of_kernels>
double Persistence_heat_maps<Scalling_of_kernels>::compute_scalar_product(const Persistence_heat_maps& second) const {
  if (discrete) {
    // first we need to check if (*this) and second are defined on the same domain and have the same dimensions:
    if (!this->check_if_the_same(second)) {
      std::cerr << "The persistence images are of non compatible sizes. We cannot therefore compute distance between "
                   "them. The program will now terminate";
      throw "The persistence images are of non compatible sizes. The program will now terminate";
    }

    // if we are here, we know that the two persistence images are defined on the same domain, so we can start computing
    // their scalar product:
    double scalar_prod = 0;
    for (size_t i = 0; i != this->heat_map.size(); ++i) {
      for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
        scalar_prod += this->heat_map[i][j] * second.heat_map[i][j];
      }
    }
    return scalar_prod;
  } else {
    int num_pts1 = this->interval.size();
    int num_pts2 = second.interval.size();
    double kernel_val = 0;
    for (int i = 0; i < num_pts1; i++) {
      std::pair<double, double> pi = this->interval[i];
      for (int j = 0; j < num_pts2; j++) {
        std::pair<double, double> pj = second.interval[j];
        kernel_val += this->weights[i] * second.weights[j] * this->kernel(pi, pj);
      }
    }
    return kernel_val;
  }
}

}  // namespace Persistence_representations
}  // namespace Gudhi

#endif  // PERSISTENCE_HEAT_MAPS_H_