summaryrefslogtreecommitdiff
path: root/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
blob: e3ed2f6a2019b0fd1cac4425949d2ebaf4f29ede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Mathieu Carriere
 *
 *    Copyright (C) 2018  Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef SLICED_WASSERSTEIN_H_
#define SLICED_WASSERSTEIN_H_

// gudhi include
#include <gudhi/read_persistence_from_file.h>
#include <gudhi/common_persistence_representations.h>
#include <gudhi/Debug_utils.h>

#include <vector>     // for std::vector<>
#include <utility>    // for std::pair<>, std::move
#include <algorithm>  // for std::sort, std::max, std::merge
#include <cmath>      // for std::abs, std::sqrt
#include <stdexcept>  // for std::invalid_argument
#include <random>     // for std::random_device

namespace Gudhi {
namespace Persistence_representations {

/**
 * \class Sliced_Wasserstein gudhi/Sliced_Wasserstein.h
 * \brief A class implementing the Sliced Wasserstein kernel.
 *
 * \ingroup Persistence_representations
 *
 * \details
 * In this class, we compute infinite-dimensional representations of persistence diagrams by using the
 * Sliced Wasserstein kernel (see \ref sec_persistence_kernels for more details on kernels). We recall that
 * infinite-dimensional representations are defined implicitly, so only scalar products and distances are available for
 * the representations defined in this class.
 * The Sliced Wasserstein kernel is defined as a Gaussian-like kernel between persistence diagrams, where the distance
 * used for comparison is the Sliced Wasserstein distance \f$SW\f$ between persistence diagrams, defined as the
 * integral of the 1-norm between the sorted projections of the diagrams onto all lines passing through the origin:
 *
 * \f$ SW(D_1,D_2)=\int_{\theta\in\mathbb{S}}\,\|\pi_\theta(D_1\cup\pi_\Delta(D_2))-\pi_\theta(D_2\cup\pi_\Delta(D_1))\
 * |_1{\rm d}\theta\f$,
 *
 * where \f$\pi_\theta\f$ is the projection onto the line defined with angle \f$\theta\f$ in the unit circle
 * \f$\mathbb{S}\f$, and \f$\pi_\Delta\f$ is the projection onto the diagonal.
 * Assuming that the diagrams are in general position (i.e. there is no collinear triple), the integral can be computed
 * exactly in \f$O(n^2{\rm log}(n))\f$ time, where \f$n\f$ is the number of points in the diagrams. We provide two
 * approximations of the integral: one in which we slightly perturb the diagram points so that they are in general
 * position, and another in which we approximate the integral by sampling \f$N\f$ lines in the circle in
 * \f$O(Nn{\rm log}(n))\f$ time. The Sliced Wasserstein Kernel is then computed as:
 *
 * \f$ k(D_1,D_2) = {\rm exp}\left(-\frac{SW(D_1,D_2)}{2\sigma^2}\right).\f$
 *
 * The first method is usually much more accurate but also
 * much slower. For more details, please see \cite pmlr-v70-carriere17a .
 *
 **/

class Sliced_Wasserstein {
 protected:
  Persistence_diagram diagram;
  int approx;
  double sigma;
  std::vector<std::vector<double> > projections, projections_diagonal;

  // **********************************
  // Utils.
  // **********************************

  void build_rep() {
    if (approx > 0) {
      double step = pi / this->approx;
      int n = diagram.size();

      for (int i = 0; i < this->approx; i++) {
        std::vector<double> l, l_diag;
        for (int j = 0; j < n; j++) {
          double px = diagram[j].first;
          double py = diagram[j].second;
          double proj_diag = (px + py) / 2;

          l.push_back(px * cos(-pi / 2 + i * step) + py * sin(-pi / 2 + i * step));
          l_diag.push_back(proj_diag * cos(-pi / 2 + i * step) + proj_diag * sin(-pi / 2 + i * step));
        }

        std::sort(l.begin(), l.end());
        std::sort(l_diag.begin(), l_diag.end());
        projections.push_back(std::move(l));
        projections_diagonal.push_back(std::move(l_diag));
      }

      diagram.clear();
    }
  }

  // Compute the angle formed by two points of a PD
  double compute_angle(const Persistence_diagram& diag, int i, int j) const {
    if (diag[i].second == diag[j].second)
      return pi / 2;
    else
      return atan((diag[j].first - diag[i].first) / (diag[i].second - diag[j].second));
  }

  // Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in
  // [0,pi]
  double compute_int_cos(double alpha, double beta) const {
    double res = 0;
    if (alpha >= 0 && alpha <= pi) {
      if (cos(alpha) >= 0) {
        if (pi / 2 <= beta) {
          res = 2 - sin(alpha) - sin(beta);
        } else {
          res = sin(beta) - sin(alpha);
        }
      } else {
        if (1.5 * pi <= beta) {
          res = 2 + sin(alpha) + sin(beta);
        } else {
          res = sin(alpha) - sin(beta);
        }
      }
    }
    if (alpha >= -pi && alpha <= 0) {
      if (cos(alpha) <= 0) {
        if (-pi / 2 <= beta) {
          res = 2 + sin(alpha) + sin(beta);
        } else {
          res = sin(alpha) - sin(beta);
        }
      } else {
        if (pi / 2 <= beta) {
          res = 2 - sin(alpha) - sin(beta);
        } else {
          res = sin(beta) - sin(alpha);
        }
      }
    }
    return res;
  }

  double compute_int(double theta1, double theta2, int p, int q, const Persistence_diagram& diag1,
                     const Persistence_diagram& diag2) const {
    double norm = std::sqrt((diag1[p].first - diag2[q].first) * (diag1[p].first - diag2[q].first) +
                            (diag1[p].second - diag2[q].second) * (diag1[p].second - diag2[q].second));
    double angle1;
    if (diag1[p].first == diag2[q].first)
      angle1 = theta1 - pi / 2;
    else
      angle1 = theta1 - atan((diag1[p].second - diag2[q].second) / (diag1[p].first - diag2[q].first));
    double angle2 = angle1 + theta2 - theta1;
    double integral = compute_int_cos(angle1, angle2);
    return norm * integral;
  }

  // Evaluation of the Sliced Wasserstein Distance between a pair of diagrams.
  double compute_sliced_wasserstein_distance(const Sliced_Wasserstein& second) const {
    GUDHI_CHECK(this->approx == second.approx,
                std::invalid_argument("Error: different approx values for representations"));

    Persistence_diagram diagram1 = this->diagram;
    Persistence_diagram diagram2 = second.diagram;
    double sw = 0;

    if (this->approx == -1) {
      // Add projections onto diagonal.
      int n1, n2;
      n1 = diagram1.size();
      n2 = diagram2.size();
      double min_ordinate = std::numeric_limits<double>::max();
      double min_abscissa = std::numeric_limits<double>::max();
      double max_ordinate = std::numeric_limits<double>::lowest();
      double max_abscissa = std::numeric_limits<double>::lowest();
      for (int i = 0; i < n2; i++) {
        min_ordinate = std::min(min_ordinate, diagram2[i].second);
        min_abscissa = std::min(min_abscissa, diagram2[i].first);
        max_ordinate = std::max(max_ordinate, diagram2[i].second);
        max_abscissa = std::max(max_abscissa, diagram2[i].first);
        diagram1.emplace_back((diagram2[i].first + diagram2[i].second) / 2,
                              (diagram2[i].first + diagram2[i].second) / 2);
      }
      for (int i = 0; i < n1; i++) {
        min_ordinate = std::min(min_ordinate, diagram1[i].second);
        min_abscissa = std::min(min_abscissa, diagram1[i].first);
        max_ordinate = std::max(max_ordinate, diagram1[i].second);
        max_abscissa = std::max(max_abscissa, diagram1[i].first);
        diagram2.emplace_back((diagram1[i].first + diagram1[i].second) / 2,
                              (diagram1[i].first + diagram1[i].second) / 2);
      }
      int num_pts_dgm = diagram1.size();

      // Slightly perturb the points so that the PDs are in generic positions.
      double epsilon = 0.0001;
      double thresh_y = (max_ordinate - min_ordinate) * epsilon;
      double thresh_x = (max_abscissa - min_abscissa) * epsilon;
      std::random_device rd;
      std::default_random_engine re(rd());
      std::uniform_real_distribution<double> uni(-1, 1);
      for (int i = 0; i < num_pts_dgm; i++) {
        double u = uni(re);
        diagram1[i].first += u * thresh_x;
        diagram1[i].second += u * thresh_y;
        diagram2[i].first += u * thresh_x;
        diagram2[i].second += u * thresh_y;
      }

      // Compute all angles in both PDs.
      std::vector<std::pair<double, std::pair<int, int> > > angles1, angles2;
      for (int i = 0; i < num_pts_dgm; i++) {
        for (int j = i + 1; j < num_pts_dgm; j++) {
          double theta1 = compute_angle(diagram1, i, j);
          double theta2 = compute_angle(diagram2, i, j);
          angles1.emplace_back(theta1, std::pair<int, int>(i, j));
          angles2.emplace_back(theta2, std::pair<int, int>(i, j));
        }
      }

      // Sort angles.
      std::sort(angles1.begin(), angles1.end(),
                [](const std::pair<double, std::pair<int, int> >& p1,
                   const std::pair<double, std::pair<int, int> >& p2) { return (p1.first < p2.first); });
      std::sort(angles2.begin(), angles2.end(),
                [](const std::pair<double, std::pair<int, int> >& p1,
                   const std::pair<double, std::pair<int, int> >& p2) { return (p1.first < p2.first); });

      // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
      std::vector<int> orderp1, orderp2;
      for (int i = 0; i < num_pts_dgm; i++) {
        orderp1.push_back(i);
        orderp2.push_back(i);
      }
      std::sort(orderp1.begin(), orderp1.end(), [&](int i, int j) {
        if (diagram1[i].second != diagram1[j].second)
          return (diagram1[i].second < diagram1[j].second);
        else
          return (diagram1[i].first > diagram1[j].first);
      });
      std::sort(orderp2.begin(), orderp2.end(), [&](int i, int j) {
        if (diagram2[i].second != diagram2[j].second)
          return (diagram2[i].second < diagram2[j].second);
        else
          return (diagram2[i].first > diagram2[j].first);
      });

      // Find the inverses of the orders.
      std::vector<int> order1(num_pts_dgm);
      std::vector<int> order2(num_pts_dgm);
      for (int i = 0; i < num_pts_dgm; i++) {
        order1[orderp1[i]] = i;
        order2[orderp2[i]] = i;
      }

      // Record all inversions of points in the orders as theta varies along the positive half-disk.
      std::vector<std::vector<std::pair<int, double> > > anglePerm1(num_pts_dgm);
      std::vector<std::vector<std::pair<int, double> > > anglePerm2(num_pts_dgm);

      int m1 = angles1.size();
      for (int i = 0; i < m1; i++) {
        double theta = angles1[i].first;
        int p = angles1[i].second.first;
        int q = angles1[i].second.second;
        anglePerm1[order1[p]].emplace_back(p, theta);
        anglePerm1[order1[q]].emplace_back(q, theta);
        int a = order1[p];
        int b = order1[q];
        order1[p] = b;
        order1[q] = a;
      }

      int m2 = angles2.size();
      for (int i = 0; i < m2; i++) {
        double theta = angles2[i].first;
        int p = angles2[i].second.first;
        int q = angles2[i].second.second;
        anglePerm2[order2[p]].emplace_back(p, theta);
        anglePerm2[order2[q]].emplace_back(q, theta);
        int a = order2[p];
        int b = order2[q];
        order2[p] = b;
        order2[q] = a;
      }

      for (int i = 0; i < num_pts_dgm; i++) {
        anglePerm1[order1[i]].emplace_back(i, pi / 2);
        anglePerm2[order2[i]].emplace_back(i, pi / 2);
      }

      // Compute the SW distance with the list of inversions.
      for (int i = 0; i < num_pts_dgm; i++) {
        std::vector<std::pair<int, double> > u, v;
        u = anglePerm1[i];
        v = anglePerm2[i];
        double theta1, theta2;
        theta1 = -pi / 2;
        unsigned int ku, kv;
        ku = 0;
        kv = 0;
        theta2 = std::min(u[ku].second, v[kv].second);
        while (theta1 != pi / 2) {
          if (diagram1[u[ku].first].first != diagram2[v[kv].first].first ||
              diagram1[u[ku].first].second != diagram2[v[kv].first].second)
            if (theta1 != theta2) sw += compute_int(theta1, theta2, u[ku].first, v[kv].first, diagram1, diagram2);
          theta1 = theta2;
          if ((theta2 == u[ku].second) && ku < u.size() - 1) ku++;
          if ((theta2 == v[kv].second) && kv < v.size() - 1) kv++;
          theta2 = std::min(u[ku].second, v[kv].second);
        }
      }
    } else {
      double step = pi / this->approx;
      std::vector<double> v1, v2;
      for (int i = 0; i < this->approx; i++) {
        v1.clear();
        v2.clear();
        std::merge(this->projections[i].begin(), this->projections[i].end(), second.projections_diagonal[i].begin(),
                   second.projections_diagonal[i].end(), std::back_inserter(v1));
        std::merge(second.projections[i].begin(), second.projections[i].end(), this->projections_diagonal[i].begin(),
                   this->projections_diagonal[i].end(), std::back_inserter(v2));

        int n = v1.size();
        double f = 0;
        for (int j = 0; j < n; j++) f += std::abs(v1[j] - v2[j]);
        sw += f * step;
      }
    }

    return sw / pi;
  }

 public:
  /** \brief Sliced Wasserstein kernel constructor.
   * \implements Topological_data_with_distances, Real_valued_topological_data, Topological_data_with_scalar_product
   * \ingroup Sliced_Wasserstein
   *
   * @param[in] _diagram  persistence diagram.
   * @param[in] _sigma    bandwidth parameter.
   * @param[in] _approx   number of directions used to approximate the integral in the Sliced Wasserstein distance, set
   *                      to -1 for random perturbation. If positive, then projections of the diagram points on all
   *                      directions are stored in memory to reduce computation time.
   *
   */
  Sliced_Wasserstein(const Persistence_diagram& _diagram, double _sigma = 1.0, int _approx = 10)
      : diagram(_diagram), approx(_approx), sigma(_sigma) {
    build_rep();
  }

  /** \brief Evaluation of the kernel on a pair of diagrams.
   * \ingroup Sliced_Wasserstein
   *
   * @pre       approx and sigma attributes need to be the same for both instances.
   * @param[in] second other instance of class Sliced_Wasserstein.
   *
   */
  double compute_scalar_product(const Sliced_Wasserstein& second) const {
    GUDHI_CHECK(this->sigma == second.sigma,
                std::invalid_argument("Error: different sigma values for representations"));
    return std::exp(-compute_sliced_wasserstein_distance(second) / (2 * this->sigma * this->sigma));
  }

  /** \brief Evaluation of the distance between images of diagrams in the Hilbert space of the kernel.
   * \ingroup Sliced_Wasserstein
   *
   * @pre       approx and sigma attributes need to be the same for both instances.
   * @param[in] second  other instance of class Sliced_Wasserstein.
   *
   */
  double distance(const Sliced_Wasserstein& second) const {
    GUDHI_CHECK(this->sigma == second.sigma,
                std::invalid_argument("Error: different sigma values for representations"));
    return std::sqrt(this->compute_scalar_product(*this) + second.compute_scalar_product(second) -
                     2 * this->compute_scalar_product(second));
  }

};  // class Sliced_Wasserstein
}  // namespace Persistence_representations
}  // namespace Gudhi

#endif  // SLICED_WASSERSTEIN_H_