summaryrefslogtreecommitdiff
path: root/src/Persistent_cohomology/example/rips_persistence_via_boundary_matrix.cpp
blob: 8c5742aa5bd110e1c368066821a578f266beab5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Clément Maria, Marc Glisse
 *
 *    Copyright (C) 2014 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Rips_complex.h>
#include <gudhi/Hasse_complex.h>
#include <gudhi/Points_off_io.h>
#include <gudhi/distance_functions.h>

#include <boost/program_options.hpp>

#include <string>
#include <vector>

////////////////////////////////////////////////////////////////
//                                                            //
//  WARNING: persistence computation itself is not parallel,  //
//  and this uses more memory than rips_persistence.          //
//                                                            //
////////////////////////////////////////////////////////////////

// Types definition
using Simplex_tree = Gudhi::Simplex_tree<>;
using Filtration_value = Simplex_tree::Filtration_value;
using Rips_complex = Gudhi::rips_complex::Rips_complex<Filtration_value>;
using Field_Zp = Gudhi::persistent_cohomology::Field_Zp;
using Point = std::vector<double>;
using Points_off_reader = Gudhi::Points_off_reader<Point>;

void program_options(int argc, char * argv[]
                     , std::string & off_file_points
                     , std::string & filediag
                     , Filtration_value & threshold
                     , int & dim_max
                     , int & p
                     , Filtration_value & min_persistence);

int main(int argc, char * argv[]) {
  std::string off_file_points;
  std::string filediag;
  Filtration_value threshold;
  int dim_max;
  int p;
  Filtration_value min_persistence;

  program_options(argc, argv, off_file_points, filediag, threshold, dim_max, p, min_persistence);

  Points_off_reader off_reader(off_file_points);
  Rips_complex rips_complex_from_file(off_reader.get_point_cloud(), threshold, Gudhi::Euclidean_distance());

  // Construct the Rips complex in a Simplex Tree
  Simplex_tree& st = *new Simplex_tree;
  rips_complex_from_file.create_complex(st, dim_max);

  std::clog << "The complex contains " << st.num_simplices() << " simplices \n";
  std::clog << "   and has dimension " << st.dimension() << " \n";

  // Sort the simplices in the order of the filtration
  st.initialize_filtration();
  int count = 0;
  for (auto sh : st.filtration_simplex_range())
    st.assign_key(sh, count++);

  // Convert to a more convenient representation.
  Gudhi::Hasse_complex<> hcpx(st);

  // Free some space.
  delete &st;

  // Compute the persistence diagram of the complex
  Gudhi::persistent_cohomology::Persistent_cohomology< Gudhi::Hasse_complex<>, Field_Zp > pcoh(hcpx);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(p);

  pcoh.compute_persistent_cohomology(min_persistence);

  // Output the diagram in filediag
  if (filediag.empty()) {
    pcoh.output_diagram();
  } else {
    std::ofstream out(filediag);
    pcoh.output_diagram(out);
    out.close();
  }
}

void program_options(int argc, char * argv[]
                     , std::string & off_file_points
                     , std::string & filediag
                     , Filtration_value & threshold
                     , int & dim_max
                     , int & p
                     , Filtration_value & min_persistence) {
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()
      ("input-file", po::value<std::string>(&off_file_points),
       "Name of file containing a point set. Format is one point per line:   X1 ... Xd ");

  po::options_description visible("Allowed options", 100);
  visible.add_options()
      ("help,h", "produce help message")
      ("output-file,o", po::value<std::string>(&filediag)->default_value(std::string()),
       "Name of file in which the persistence diagram is written. Default print in std::clog")
      ("max-edge-length,r", po::value<Filtration_value>(&threshold)->default_value(0),
       "Maximal length of an edge for the Rips complex construction.")
      ("cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
       "Maximal dimension of the Rips complex we want to compute.")
      ("field-charac,p", po::value<int>(&p)->default_value(11),
       "Characteristic p of the coefficient field Z/pZ for computing homology.")
      ("min-persistence,m", po::value<Filtration_value>(&min_persistence),
       "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals");

  po::positional_options_description pos;
  pos.add("input-file", 1);

  po::options_description all;
  all.add(visible).add(hidden);

  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).
            options(all).positional(pos).run(), vm);
  po::notify(vm);

  if (vm.count("help") || !vm.count("input-file")) {
    std::clog << std::endl;
    std::clog << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::clog << "of a Rips complex defined on a set of input points.\n \n";
    std::clog << "The output diagram contains one bar per line, written with the convention: \n";
    std::clog << "   p   dim b d \n";
    std::clog << "where dim is the dimension of the homological feature,\n";
    std::clog << "b and d are respectively the birth and death of the feature and \n";
    std::clog << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;

    std::clog << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::clog << visible << std::endl;
    exit(-1);
  }
}