summaryrefslogtreecommitdiff
path: root/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Multi_field.h
blob: 306877e7fd71450ad00f5771dda263742184e9e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Clément Maria
 *
 *    Copyright (C) 2014  INRIA Sophia Antipolis-Méditerranée (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef SRC_PERSISTENT_COHOMOLOGY_INCLUDE_GUDHI_PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_
#define SRC_PERSISTENT_COHOMOLOGY_INCLUDE_GUDHI_PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_

#include <gmpxx.h>

#include <vector>
#include <utility>

namespace Gudhi {

namespace persistent_cohomology {

/** \brief Structure representing coefficients in a set of finite fields simultaneously
 * using the chinese remainder theorem.
 *
 * \implements CoefficientField
 * \ingroup persistent_cohomology

 * Details on the algorithms may be found in \cite boissonnat:hal-00922572
 */
class Multi_field {
 public:
  typedef mpz_class Element;

  Multi_field()
  : prod_characteristics_(0),
    mult_id_all(0),
    add_id_all(0) {
  }

  /* Initialize the multi-field. The generation of prime numbers might fail with
   * a very small probability.*/
  void init(uint8_t min_prime, uint8_t max_prime) {
    if (max_prime < 2) {
      std::cerr << "There is no prime less than " << max_prime << std::endl;
    }
    if (min_prime > max_prime) {
      std::cerr << "No prime in [" << min_prime << ":" << max_prime << "]"
          << std::endl;
    }
    // fill the list of prime numbers
    uint8_t curr_prime = min_prime;
    mpz_t tmp_prime;
    mpz_init_set_ui(tmp_prime, min_prime);
    // test if min_prime is prime
    int is_prime = mpz_probab_prime_p(tmp_prime, 25);  // probabilistic primality test

    if (is_prime == 0) {  // min_prime is composite
      mpz_nextprime(tmp_prime, tmp_prime);
      curr_prime = mpz_get_ui(tmp_prime);
    }

    while (curr_prime <= max_prime) {
      primes_.push_back(curr_prime);
      mpz_nextprime(tmp_prime, tmp_prime);
      curr_prime = mpz_get_ui(tmp_prime);
    }
    // set m to primorial(bound_prime)
    prod_characteristics_ = 1;
    for (auto p : primes_) {
      mpz_mul_ui(prod_characteristics_.get_mpz_t(),
                 prod_characteristics_.get_mpz_t(), p);
    }

    // Uvect_
    Element Ui;
    Element tmp_elem;
    for (auto p : primes_) {
      assert(p != 0);  // division by zero
      tmp_elem = prod_characteristics_ / p;
      // Element tmp_elem_bis = 10;
      mpz_powm_ui(tmp_elem.get_mpz_t(), tmp_elem.get_mpz_t(), p - 1,
                  prod_characteristics_.get_mpz_t());
      Uvect_.push_back(tmp_elem);
    }
    mult_id_all = 0;
    for (auto uvect : Uvect_) {
      assert(prod_characteristics_ != 0);  // division by zero
      mult_id_all = (mult_id_all + uvect) % prod_characteristics_;
    }
  }

  void clear_coefficient(Element & x) {
    mpz_clear(x.get_mpz_t());
  }

  /** \brief Returns the additive idendity \f$0_{\Bbbk}\f$ of the field.*/
  const Element& additive_identity() const {
    return add_id_all;
  }
  /** \brief Returns the multiplicative identity \f$1_{\Bbbk}\f$ of the field.*/
  const Element& multiplicative_identity() const {
    return mult_id_all;
  }  // 1 everywhere

  Element multiplicative_identity(Element Q) {
    if (Q == prod_characteristics_) {
      return multiplicative_identity();
    }

    assert(prod_characteristics_ != 0);  // division by zero
    Element mult_id = 0;
    for (unsigned int idx = 0; idx < primes_.size(); ++idx) {
      assert(primes_[idx] != 0);  // division by zero
      if ((Q % primes_[idx]) == 0) {
        mult_id = (mult_id + Uvect_[idx]) % prod_characteristics_;
      }
    }
    return mult_id;
  }

  /** Returns y * w */
  Element times(const Element& y, int w) {
    assert(prod_characteristics_ != 0);  // division by zero
    Element tmp = (y * w) % prod_characteristics_;
    if (tmp < 0)
      return prod_characteristics_ + tmp;
    return tmp;
  }

  void plus_equal(Element & x, const Element& y) {
    assert(prod_characteristics_ != 0);  // division by zero
    x += y;
    x %= prod_characteristics_;
  }

  /** \brief Returns the characteristic \f$p\f$ of the field.*/
  const Element& characteristic() const {
    return prod_characteristics_;
  }

  /** Returns the inverse in the field. Modifies P.*/
  std::pair<Element, Element> inverse(Element x, Element QS) {
    Element QR;
    mpz_gcd(QR.get_mpz_t(), x.get_mpz_t(), QS.get_mpz_t());  // QR <- gcd(x,QS)
    if (QR == QS)
      return std::pair<Element, Element>(additive_identity(), multiplicative_identity());  // partial inverse is 0
    Element QT = QS / QR;
    Element inv_qt;
    mpz_invert(inv_qt.get_mpz_t(), x.get_mpz_t(), QT.get_mpz_t());

    assert(prod_characteristics_ != 0);  // division by zero
    return std::pair<Element, Element>(
        (inv_qt * multiplicative_identity(QT)) % prod_characteristics_, QT);
  }
  /** Returns -x * y.*/
  Element times_minus(const Element& x, const Element& y) {
    assert(prod_characteristics_ != 0);  // division by zero
    return prod_characteristics_ - ((x * y) % prod_characteristics_);
  }

  /** Set x <- x + w * y*/
  void plus_times_equal(Element & x, const Element& y, const Element& w) {
    assert(prod_characteristics_ != 0);  // division by zero
    x = (x + w * y) % prod_characteristics_;
  }

  Element prod_characteristics_;  // product of characteristics of the fields
                                  // represented by the multi-field class
  std::vector<uint8_t> primes_;       // all the characteristics of the fields
  std::vector<Element> Uvect_;
  Element mult_id_all;
  const Element add_id_all;
};

}  // namespace persistent_cohomology

}  // namespace Gudhi

#endif  // SRC_PERSISTENT_COHOMOLOGY_INCLUDE_GUDHI_PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_