summaryrefslogtreecommitdiff
path: root/src/Rips_complex/include/gudhi/Rips_complex.h
blob: da755b7c2371a95890c1a52d2456a74fb0fc3bba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Clément Maria, Vincent Rouvreau
 *
 *    Copyright (C) 2016  INRIA
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef RIPS_COMPLEX_H_
#define RIPS_COMPLEX_H_

#include <gudhi/Debug_utils.h>
#include <gudhi/graph_simplicial_complex.h>

#include <boost/graph/adjacency_list.hpp>

#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <limits>  // for numeric_limits
#include <utility>  // for pair<>


namespace Gudhi {

namespace rips_complex {

/**
 * \class Rips_complex
 * \brief Rips complex data structure.
 * 
 * \ingroup rips_complex
 * 
 * \details
 * The data structure is a one skeleton graph constructed from a point cloud, containing edges when the edge length is
 * less or equal to a given threshold. Edge length is computed from a user given function.
 * 
 * The complex is a template class requiring a Filtration_value type.
 * 
 * \tparam Filtration_value must meet `SimplicialComplexForRips` concept.
 */
template<typename Filtration_value>
class Rips_complex {
 private:
  typedef typename boost::adjacency_list < boost::vecS, boost::vecS, boost::undirectedS
      , boost::property < vertex_filtration_t, Filtration_value >
      , boost::property < edge_filtration_t, Filtration_value >> Graph_t;
  
  typedef int Vertex_handle;
  
 public:
  /** \brief Rips_complex constructor from a list of points.
   *
   * @param[in] points Range of points.
   * @param[in] threshold rips value.
   * @param[in] distance distance function that returns a Filtration_value from 2 given points.
   * 
   * The type InputPointRange must be a range for which std::begin and std::end return input iterators on a point.
   */
  template<typename InputPointRange, typename Point_d >
  Rips_complex(const InputPointRange& points, Filtration_value threshold,
               Filtration_value distance(const Point_d& p1,const Point_d& p2)) {
    std::vector< std::pair< Vertex_handle, Vertex_handle > > edges;
    std::vector< Filtration_value > edges_fil;
    std::map< Vertex_handle, Filtration_value > vertices;

    // Compute the proximity graph of the points.
    // If points contains n elements, the proximity graph is the graph with n vertices, and an edge [u,v] iff the
    // distance function between points u and v is smaller than threshold.
    // --------------------------------------------------------------------------------------------
    // Creates the vector of edges and its filtration values (returned by distance function)
    Vertex_handle idx_u, idx_v;
    Filtration_value fil;
    idx_u = 0;
    for (auto it_u = std::begin(points); it_u != std::end(points); ++it_u) {
      idx_v = idx_u + 1;
      for (auto it_v = it_u + 1; it_v != std::end(points); ++it_v, ++idx_v) {
        fil = distance(*it_u, *it_v);
        if (fil <= threshold) {
          edges.emplace_back(idx_u, idx_v);
          edges_fil.push_back(fil);
        }
      }
      ++idx_u;
    }

    // --------------------------------------------------------------------------------------------
    // Creates the proximity graph from edges and sets the property with the filtration value.
    // Number of points is labeled from 0 to idx_u-1
    rips_skeleton_graph_ = Graph_t(edges.begin() , edges.end() , edges_fil.begin() , idx_u);

    auto vertex_prop = boost::get(vertex_filtration_t(), rips_skeleton_graph_);

    using vertex_iterator = typename boost::graph_traits<Graph_t>::vertex_iterator;
    vertex_iterator vi, vi_end;
    for (std::tie(vi, vi_end) = boost::vertices(rips_skeleton_graph_);
         vi != vi_end; ++vi) {
      boost::put(vertex_prop, *vi, 0.);
    }

  }

  /** \brief Initializes the simplicial complex from the 1-skeleton graph and expands it until a given maximal
   * dimension.
   *
   * \tparam SimplicialComplexForRips must meet `SimplicialComplexForRips` concept.
   * 
   * @param[in] complex SimplicialComplexForRips to be created.
   * @param[in] dim_max graph expansion for rips until this given maximal dimension.
   * 
   * @return true if creation succeeds, false otherwise.
   * 
   */
  template <typename SimplicialComplexForRips>
  bool create_complex(SimplicialComplexForRips& complex, int dim_max) {
    if (complex.num_vertices() > 0) {
      std::cerr << "Rips_complex create_complex - complex is not empty\n";
      return false; // ----- >>
    }

    // insert the proximity graph in the simplicial complex
    complex.insert_graph(rips_skeleton_graph_);
    // expand the graph until dimension dim_max
    complex.expansion(dim_max);

    // --------------------------------------------------------------------------------------------
    return true;
  }
 private:
  Graph_t rips_skeleton_graph_;
};

} // namespace rips_complex

} // namespace Gudhi

#endif  // RIPS_COMPLEX_H_