summaryrefslogtreecommitdiff
path: root/src/Rips_complex/include/gudhi/Sparse_rips_complex.h
blob: a55010047287a9d83c8efe353e56ab5e34825fd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s): Marc Glisse
 *
 *    Copyright (C) 2018 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef SPARSE_RIPS_COMPLEX_H_
#define SPARSE_RIPS_COMPLEX_H_

#include <gudhi/Debug_utils.h>
#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/choose_n_farthest_points.h>

#include <boost/graph/adjacency_list.hpp>
#include <boost/range/metafunctions.hpp>

#include <vector>

namespace Gudhi {

namespace rips_complex {

// The whole interface is copied on Rips_complex. A redesign should be discussed with all complex creation classes in
// mind.

/**
 * \class Sparse_rips_complex
 * \brief Sparse Rips complex data structure.
 *
 * \ingroup rips_complex
 *
 * \details
 * This class is used to construct a sparse \f$(1+O(\epsilon))\f$-approximation of `Rips_complex`, i.e. a filtered
 * simplicial complex that is multiplicatively
 * \f$(1+O(\epsilon))\f$-interleaved with the Rips filtration. More precisely,
 * this is a \f$(1,\frac{1}{1-\epsilon}\f$-interleaving.
 *
 * \tparam Filtration_value is the type used to store the filtration values of the simplicial complex.
 */
template <typename Filtration_value>
class Sparse_rips_complex {
 private:
  // TODO(MG): use a different graph where we know we can safely insert in parallel.
  typedef typename boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS,
                                         boost::property<vertex_filtration_t, Filtration_value>,
                                         boost::property<edge_filtration_t, Filtration_value>>
      Graph;

  typedef int Vertex_handle;

 public:
  /** \brief Sparse_rips_complex constructor from a list of points.
   *
   * @param[in] points Range of points.
   * @param[in] distance Distance function that returns a `Filtration_value` from 2 given points.
   * @param[in] epsilon Approximation parameter. epsilon must be positive.
   * @param[in] mini Minimal filtration value. Ignore anything below this scale. This is a less efficient version of `Gudhi::subsampling::sparsify_point_set()`.
   * @param[in] maxi Maximal filtration value. Ignore anything above this scale.
   *
   */
  template <typename RandomAccessPointRange, typename Distance>
  Sparse_rips_complex(const RandomAccessPointRange& points, Distance distance, double epsilon, Filtration_value mini=-std::numeric_limits<Filtration_value>::infinity(), Filtration_value maxi=std::numeric_limits<Filtration_value>::infinity())
      : epsilon_(epsilon) {
    GUDHI_CHECK(epsilon > 0, "epsilon must be positive");
    auto dist_fun = [&](Vertex_handle i, Vertex_handle j) { return distance(points[i], points[j]); };
    subsampling::choose_n_farthest_points(dist_fun, boost::irange<Vertex_handle>(0, boost::size(points)), -1, -1,
                                          std::back_inserter(sorted_points), std::back_inserter(params));
    compute_sparse_graph(dist_fun, epsilon, mini, maxi);
  }

  /** \brief Sparse_rips_complex constructor from a distance matrix.
   *
   * @param[in] distance_matrix Range of range of distances.
   * `distance_matrix[i][j]` returns the distance between points \f$i\f$ and
   * \f$j\f$ as long as \f$ 0 \leqslant j < i \leqslant
   * distance\_matrix.size().\f$
   * @param[in] epsilon Approximation parameter. epsilon must be positive.
   * @param[in] mini Minimal filtration value. Ignore anything below this scale. This is a less efficient version of `Gudhi::subsampling::sparsify_point_set()`.
   * @param[in] maxi Maximal filtration value. Ignore anything above this scale.
   */
  template <typename DistanceMatrix>
  Sparse_rips_complex(const DistanceMatrix& distance_matrix, double epsilon, Filtration_value mini=-std::numeric_limits<Filtration_value>::infinity(), Filtration_value maxi=std::numeric_limits<Filtration_value>::infinity())
      : Sparse_rips_complex(boost::irange<Vertex_handle>(0, boost::size(distance_matrix)),
                            [&](Vertex_handle i, Vertex_handle j) { return (i==j) ? 0 : (i<j) ? distance_matrix[j][i] : distance_matrix[i][j]; },
                            epsilon, mini, maxi) {}

  /** \brief Fills the simplicial complex with the sparse Rips graph and
   * expands it with all the cliques, stopping at a given maximal dimension.
   *
   * \tparam SimplicialComplexForRips must meet `SimplicialComplexForRips` concept.
   *
   * @param[in] complex the complex to fill
   * @param[in] dim_max maximal dimension of the simplicial complex.
   * @exception std::invalid_argument In debug mode, if `complex.num_vertices()` does not return 0.
   *
   */
  template <typename SimplicialComplexForRips>
  void create_complex(SimplicialComplexForRips& complex, int dim_max) {
    GUDHI_CHECK(complex.num_vertices() == 0,
                std::invalid_argument("Sparse_rips_complex::create_complex - simplicial complex is not empty"));

    complex.insert_graph(graph_);
    if(epsilon_ >= 1) {
      complex.expansion(dim_max);
      return;
    }
    const int n = boost::size(params);
    std::vector<Filtration_value> lambda(n);
    // lambda[original_order]=params[sorted_order]
    for(int i=0;i<n;++i)
      lambda[sorted_points[i]] = params[i];
    double cst = epsilon_ * (1 - epsilon_) / 2;
    auto block = [cst,&complex,&lambda](typename SimplicialComplexForRips::Simplex_handle sh){
      auto filt = complex.filtration(sh);
      auto mini = filt * cst;
      for(auto v : complex.simplex_vertex_range(sh)){
        if(lambda[v] < mini)
          return true; // v died before this simplex could be born
      }
      return false;
    };
    complex.expansion_with_blockers(dim_max, block);
  }

 private:
  // PointRange must be random access.
  template <typename Distance>
  void compute_sparse_graph(Distance& dist, double epsilon, Filtration_value mini, Filtration_value maxi) {
    const auto& points = sorted_points; // convenience alias
    const int n = boost::size(points);
    double cst = epsilon * (1 - epsilon) / 2;
    graph_.~Graph();
    new (&graph_) Graph(n);
    // for(auto v : vertices(g)) // doesn't work :-(
    typename boost::graph_traits<Graph>::vertex_iterator v_i, v_e;
    for (std::tie(v_i, v_e) = vertices(graph_); v_i != v_e; ++v_i) {
      auto v = *v_i;
      // This whole loop might not be necessary, leave it until someone investigates if it is safe to remove.
      put(vertex_filtration_t(), graph_, v, 0);
    }

    // TODO(MG):
    // - make it parallel
    // - only test near-enough neighbors
    for (int i = 0; i < n; ++i) {
      auto&& pi = points[i];
      auto li = params[i];
      if (li < mini) break;
      for (int j = i + 1; j < n; ++j) {
        auto&& pj = points[j];
        auto d = dist(pi, pj);
        auto lj = params[j];
        if (lj < mini) break;
        GUDHI_CHECK(lj <= li, "Bad furthest point sorting");
        Filtration_value alpha;

        // The paper has d/2 and d-lj/e to match the Cech, but we use doubles to match the Rips
        if (d * epsilon <= 2 * lj)
          alpha = d;
        else if (d * epsilon > li + lj)
          continue;
        else {
          alpha = (d - lj / epsilon) * 2;
          // Keep the test exactly the same as in block to avoid inconsistencies
          if (epsilon < 1 && alpha * cst > lj)
            continue;
        }

        if (alpha <= maxi)
          add_edge(pi, pj, alpha, graph_);
      }
    }
  }

  Graph graph_;
  double epsilon_;
  // Because of the arbitrary split between constructor and create_complex
  // sorted_points[sorted_order]=original_order
  std::vector<Vertex_handle> sorted_points;
  // params[sorted_order]=distance to previous points
  std::vector<Filtration_value> params;
};

}  // namespace rips_complex

}  // namespace Gudhi

#endif  // SPARSE_RIPS_COMPLEX_H_